Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nyx Artemis
Xem chi tiết
Nguyễn Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 20:46

Bạn ơi, bạn ghi lại đề đi bạn. Khó hiểu quá!

Nhan Thanh
31 tháng 7 2021 lúc 21:14

Đề là \(x+y-\sqrt{xy}=3\) với \(\sqrt{x+1}+\sqrt{y-1}=4\) pk bạn?

Nhan Thanh
31 tháng 7 2021 lúc 22:37

Điều kiện: \(\left\{{}\begin{matrix}xy>0\\x,y\ge-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\x+2+2\sqrt{\left(x+1\right)\left(y+1\right)}=16\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\x+2+2\sqrt{xy+x+y+1}=16\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}S=x+y\\P=xy\end{matrix}\right.\) ( ĐK: \(S^2\ge4P\) ), khi đó hệ phương trình trở thành:

\(\left\{{}\begin{matrix}S-\sqrt{P}=3\\S+2+2\sqrt{S+P+1}=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}P=\left(S-3\right)^2\left(S\ge3\right)\\2\sqrt{S+\left(S-3\right)^2+1}=14-S\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\le S\le14\\P=\left(3-S\right)^2\\4\left(S^2-5S+10\right)=196-28S+S^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\le S\le14\\P=\left(3-S\right)^2\\3S^2+8S-156=0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}S=6\\P=9\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=6\\x^2-x+9=0\end{matrix}\right.\) \(\Leftrightarrow x=y=3\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(3;3\right)\)

 

 

 

Nguyen Van LInh
Xem chi tiết
Akai Haruma
28 tháng 7 lúc 20:17

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ tốt hơn nhé.

noname
Xem chi tiết
nthv_.
23 tháng 11 2021 lúc 7:44

\(x-y-\sqrt{x}-\sqrt{y}\\ =\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\\ =\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)

Hoa Liên
Xem chi tiết
Akai Haruma
29 tháng 7 2020 lúc 20:15

Bạn chú ý gõ đề bằng công thức toán (hộp biểu tượng $\sum$) trên thanh công cụ. Nhìn đề rối mắt thế này thật tình không ai muốn đọc chứ đừng nói đến giúp =)))

Đặng Nguyễn Thanh Trà
Xem chi tiết
Đặng Nguyễn Thanh Trà
Xem chi tiết
Nguyễn Thị  Anh
Xem chi tiết
Trần Anh Quân
Xem chi tiết