cho x,y>0 thoả mãn x+y ≤ 1.
tình Min \(A=\frac{1}{x^2}+\frac{1}{^{y2}}+\frac{2}{xy}+4xy\)
1. Cho x,y là 2 số thực khác 0 thỏa mãn :5x2 +\(\frac{y^2}{4}\)+\(\frac{1}{4x^2}\)=\(\frac{5}{2}\).Tìm min, max của A=2013-xy
2.Cho x,y>0 thỏa mãn x+y=1.Tìm min của A=\(\frac{1}{x^2+y^2}\)+\(\frac{2}{xy}\)+4xy
3.Cho x,y là 2 số dương thoả mãn x+\(\frac{1}{y}\)\(\le\)1. Tìm min của C=32.\(\frac{x}{y}\)+2011.\(\frac{y}{x}\)
4.Cho x,y là 2 số thực dương thỏa mãn x+y=\(\frac{5}{4}\). Tìm min của A=\(\frac{4}{x}\)+\(\frac{1}{4y}\)
5.Giải phương trình : \(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}\)+\(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}\)+\(\frac{1}{\sqrt{x+1}+\sqrt{x}}\)=1
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Các bạn ơi giúp mình với ạ, cảm ơn nhiều!
dong y quan diem @aliba
bo xung them. nhieu qua khi tra loi phan cau hoi troi len khoi man hinh =>" ko nhin duoc de bai"
(da khong biet lai con luoi dang cau hoi nua)
2.Cho x,y>0 thỏa mãn x+y=1.Tìm min của A=\(\frac{1}{x^2+y^2}\)+\(\frac{2}{xy}\) +4xy
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+2+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)
A = \(\frac{7}{2}\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)-\frac{5}{2\left(x^2+y^2\right)}\)
Áp dụng bđt cauchy là ra bài
Cho x,y>0 và x+y=1 Tìm Min
A=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
Ta có: \(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{2xy}+8xy\right)-4xy\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+2\sqrt{\frac{1}{2xy}.8xy}-\left(x+y\right)^2=4+4-1=7\)
Dấu "=" xảy ra khi và chỉ khi x = y = 0,5.
Cho x >0 thoả mãn: x^2 -3x-1 và x+y=1.Tìm GTNN:
A= x^2 +y^2 C=\(\frac{1}{x+2y}+\frac{1}{2x+y}\)
B=3x^2+3y^2+4xy. D=\(\frac{1}{x^2}+\frac{2}{xy}\)
MIk CHỈ GIẢI A VÀ B THÔI NHÉ!! NẾU SAI MONG CÁC BẠN THÔNG CẢM!!
A= \(\left(x+y\right)^2-2xy\ge-2xy\)
B= \(3\left(x^2+y^2\right)+4xy=3\left[\left(x+y\right)^2-2xy\right]+4xy\)
= \(3\left(x+y\right)^2-6xy+4xy=3\left(x+y\right)^2-2xy\ge-6xy\)( DO TỚ LẤY 3 NHÂN VỚI -2 NHA)
VẬY GTNN CỦA A VÀ B LẦN LƯỢT LÀ -2XY VÀ -6XY (ĐỀU TMĐK)
cho x,y >0 thỏa mãn x+y=1 tìm min A= \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
và B= \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
Tìm Min của A=\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) với : x>0 , y>0 , x+y<1
Như này nha bạn
Akakakakaka,am,am
ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)
\(\ge4+2+5=11\)
"=" tại x = y = 1/2
Cho x,y >0 và x+y<_1
Tìm Min A=\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{\left(x+y\right)^2}\)
\(\ge4+2+5=11\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
Vậy..
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
Cho x,y >0, thoả mãn x+y=1
Chứng minh: \(\frac{1}{x^2}+\frac{1}{y}-\frac{2}{xy}\ge16\)