Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khôi 2k9
Xem chi tiết
Tôi Là Ai
Xem chi tiết
Thắng Nguyễn
18 tháng 10 2016 lúc 19:02

Ta có:

\(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Rightarrow\sqrt{\frac{2}{xy}}\le1\Rightarrow xy\ge2\)

\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\)

\(\ge x^2+y=x^2+\frac{y}{2}+\frac{y}{2}\)\(\ge3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\)(Đpcm0

Dấu = khi x=1;y=2

Xem chi tiết
Nguyễn Minh Đăng
27 tháng 1 2021 lúc 22:25

Áp dụng BĐT Cauchy và Cauchy - Schwarz ta có:

 \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy\cdot\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)

\(=\frac{4}{\left(x+y\right)^2}+2+\frac{5}{1^2}=4+2+5=11\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
hoàng thị huyền trang
Xem chi tiết
tth_new
19 tháng 9 2019 lúc 7:59

Nhớ có câu tương tự bài này mà sao nót ko hiển thị nhỉ? Thôi kệ nhai lại vậy:v

\(gt\Leftrightarrow\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4\)

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b\Rightarrow\left(a+1\right)\left(b+1\right)=4\Rightarrow ab+a+b=3\)

Ta có: \(LHS=\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\)

\(=\frac{1}{\sqrt{3\left(\frac{1}{a}\right)^2+1}}+\frac{1}{\sqrt{3\left(\frac{1}{b}\right)^2+1}}\)

\(=\frac{a}{\sqrt{a^2+3}}+\frac{b}{\sqrt{b^2+3}}=\frac{a}{\sqrt{\left(a+1\right)\left(a+b\right)}}+\frac{b}{\sqrt{\left(b+1\right)\left(a+b\right)}}\) (thay cái giả thiết vào:v)

\(\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{a+b}{a+b}\right)=\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}\right)+\frac{1}{2}\)

\(=\frac{1}{2}\left(\frac{ab+3}{ab+a+b+1}\right)+\frac{1}{2}=\frac{1}{2}\left(\frac{ab+3}{4}\right)+\frac{1}{2}\) (1)

Từ giả thiết dễ dàng chứng minh \(ab\le1\). Từ đó thay vào (1) ta có đpcm.

Hoàng hôn  ( Cool Team )
25 tháng 9 2019 lúc 21:41

Nhớ có câu tương tự bài này mà sao nót ko hiển thị nhỉ? Thôi kệ nhai lại vậy:v

gt\Leftrightarrow\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4gt⇔(x1​+1)(y1​+1)=4

Đặt \frac{1}{x}=a;\frac{1}{y}=b\Rightarrow\left(a+1\right)\left(b+1\right)=4\Rightarrow ab+a+b=3x1​=a;y1​=b⇒(a+1)(b+1)=4⇒ab+a+b=3

Ta có: LHS=\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}LHS=3x2+1​1​+3y2+1​1​

=\frac{1}{\sqrt{3\left(\frac{1}{a}\right)^2+1}}+\frac{1}{\sqrt{3\left(\frac{1}{b}\right)^2+1}}=3(a1​)2+1​1​+3(b1​)2+1​1​

=\frac{a}{\sqrt{a^2+3}}+\frac{b}{\sqrt{b^2+3}}=\frac{a}{\sqrt{\left(a+1\right)\left(a+b\right)}}+\frac{b}{\sqrt{\left(b+1\right)\left(a+b\right)}}=a2+3​a​+b2+3​b​=(a+1)(a+b)​a​+(b+1)(a+b)​b (thay cái giả thiết vào:v)

\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{a+b}{a+b}\right)=\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}\right)+\frac{1}{2}≤21​(a+1a​+b+1b​+a+ba+b​)=21​(a+1a​+b+1b​)+21​

=\frac{1}{2}\left(\frac{ab+3}{ab+a+b+1}\right)+\frac{1}{2}=\frac{1}{2}\left(\frac{ab+3}{4}\right)+\frac{1}{2}=21​(ab+a+b+1ab+3​)+21​=21​(4ab+3​)+21​ (1)

Từ giả thiết dễ dàng chứng minh ab\le1ab≤1. Từ đó thay vào (1) ta có đpcm.

trần manh kiên
Xem chi tiết
Kiều Trang
8 tháng 8 2018 lúc 20:15

lam thế  nao vậy?

ko hỉu

Tran Le Khanh Linh
30 tháng 4 2020 lúc 7:59

Giả thiết đã cho có thể viết lại được thành 3x2-2y2=1(1)

Từ đây, ta có x lẻ nên x2chia 8 dư 1 => 3x2 chia 8 dư 3

Từ đo ta có 2y2 chia 8 dư 2

=> y2 chia 8 dư 1. Do đó: x2-y2 chia 8 (2)

Tiếp theo ta sẽ chứng minh x2-y2chia hết cho 5 (3)

Chú ý rằng số dư của a2 (a thuộc Z) khi chia cho 5 là 0;1 và 4

Nếu y2 chia 5 thì từ (1) ta có 3x2 chia 5 dư 1, mâu thuẫn do só dư của 3x2 khi chia 5 chỉ có thể là 0;3;2Nếu y2 chia 5 dư 4 thì từ (1) ta có 3x2 chia 5 dư 4, mâu thuẫnDo đó ta phải có y2 chia 5 dư 1. Khi đó từ (1) ta cũng suy ra x2 chia 5 dư 1. Dẫn đến x2-y2 chia hết cho 5

Từ (2) và (3) với chú ý (5;8)=1 ta thu được x2-y2 chia hết cho 40 (đpcm)

Khách vãng lai đã xóa
Siêu Nhân Lê
Xem chi tiết
Yim Yim
Xem chi tiết
Phùng Minh Quân
16 tháng 5 2020 lúc 18:34

\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)

Khách vãng lai đã xóa
tth_new
27 tháng 6 2020 lúc 20:45

\(VT-VP=\Sigma\frac{\left(x+y\right)\left(x-y\right)^2}{y^2}\ge0\)

Khách vãng lai đã xóa
CR7 kathy
Xem chi tiết
ミ★kͥ-yͣeͫt★彡
19 tháng 9 2019 lúc 9:17

Áp dụng BĐT Cauchy cho 3 số dương, ta được:

\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)

\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\sqrt[3]{\frac{1}{y\left(y+1\right)}.\frac{y}{2}.\frac{y+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)

\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\sqrt[3]{\frac{1}{z\left(z+1\right)}.\frac{z}{2}.\frac{z+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)

\(\Rightarrow\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\)\(+\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\)

\(+\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}.3=\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\left(đpcm\right)\)

Siêu Nhân Lê
Xem chi tiết
Tôi Là Ai
18 tháng 10 2016 lúc 17:08

ngu ngưoi viet cai de cung sai

ミ★kͥ-yͣeͫt★彡
19 tháng 9 2019 lúc 8:02

Ta có: \(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Leftrightarrow\sqrt{\frac{2}{xy}}\le1\Leftrightarrow xy\ge2\)

\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\)

\(\ge x^2+y=x^2+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\left(đpcm\right)\)

Dấu "="\(\Leftrightarrow x=1,y=2\)