X/3= y/3 và y/5=z/7 và 2x+3y-z= 372
a, x/15 = y/20 = z/28 và 2x + 3y -2 =186
b, x/3 = y/4 và y/5 = z/7 và 2x + 3y - z = 372
c, x/2 = y/3 và y/5 = z/7 và x + y + z =98
d, 2x = 3y = 5z và x + y - z = 95
a,Ta có:\(2x+3y-2=186\Rightarrow2x+3y=188\)
AD t/c DTS bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y}{2.15+3.20}=\frac{188}{90}=\frac{94}{45}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{94}{45}\Rightarrow x=\frac{94}{3}\\\frac{y}{20}=\frac{94}{45}\Rightarrow x=\frac{376}{9}\\\frac{z}{28}=\frac{94}{45}\Rightarrow x=\frac{2632}{45}\end{cases}}\)
b,Ta có:\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
AD t/c DTS bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{18}=\frac{2x+3y-z}{2.15+3.20-18}=\frac{372}{62}=6\)
Tự tìm x
c,\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Tự áp dụng
cậu xem titan à
1) Tìm x,y,z biết :
a) x/3 =y/4 và y/5 =z/7 và 2x +3y-z= 372
b) 2x=3y=5z (1) và x+y-z =95 (2)
1)a)
x/3=y/4=>x/15=y/20
y/5=z/7=>y/20=z/28
=>x/15=y/20=z/18
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x/15=y/20=z/28=2x+3y-z/30+60-28=372/62=6
=>x=90
y=120
z=168
b)
2x=3y=5z
2x=3y=>x/3=y/2=>x/15=y/10
3y=5z=>y/5=z/3=>y/10=z/6
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x/15=y/10=z/6=x+y-z/15+10-6=95/19=5
=>x=75
y=50
z=30
a) Ta co :x/3=y/4 suy ra x/15=y/20 (1)
y/5=z/7 suy ra y/20=z/28 (2)
Tu (1) va (2) suy ra y/20=x/15=z/28
còn lại tự làm nhé dễ rùi
b)Ta co : 2x=3y=5z suy ra x phan 1/2=y phan 1/3 = z phan 1/5
de rui tu lam nha
\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{7}\) và \(2x+3y-z=372\)
\(\dfrac{x}{3}=\dfrac{y}{4}\)⇒\(\dfrac{x}{15}=\dfrac{y}{20}\)
\(\dfrac{y}{5}=\dfrac{z}{7}\)⇒\(\dfrac{y}{20}=\dfrac{z}{28}\)
⇒\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)⇒\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{372}{62}=6\)
⇒\(\left\{{}\begin{matrix}x=6.15=90\\y=6.20=120\\z=6.28=168\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{372}{62}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.15=90\\y=6.20=120\\z=6.28=168\end{matrix}\right.\)
Tìm x,y,z biết:
A)x/y=3/4 và 2x+ 5y= 10
B) 2x/3y=-1/3 và 2x+ 3y= 7
C) 21x=19y và x-y= 4
D) x/10=y/6=z/21 và 5x+y-2z=28
E) x/3=y/8=z/5 và 3x +y - z= 14
F) x/3=y/4 vày/5=z/7 và 2x+ 3y- z= 372
G) 2x= 3y= 5z (1) và x+ y- z= 95
H) 1/2x= 2/3y= 3/4z (1) và x- y= 15
M) x/5= y/3 và 2^2- y^2= 4 (x, y>0)
N) x/7 = y/4 và x.y= 118
I) x-1/2= y-2/3= z-3/4 (1) và 2x + 3y - z = 50
K) x/3= y/4 = z/6 và x.y.z = 576
GIÚP MK VỚI MK ĐANG CẦN GẤP
tìm x,y,z:
x/3=y/4 và y/5=z/7 và 2x+3y-z=372
(lưu ý ,làm theo cách BCNN)làm nhang giúp mk nha
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
Theo dãy tỉ số bằng nhau
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{2x+3y-z}{30+60-28}=\frac{372}{62}=6\)
\(\Rightarrow\begin{cases}x=90\\y=120\\z=168\end{cases}\)
x/3=y/4 ; y/5=z/7 va 2x+3y-z=372
Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
Quy đòng : \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\) và \(2x+3y-z=372\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2.15+3.20-28}=\frac{372}{62}=6\)
\(\Rightarrow\begin{cases}\frac{x}{15}=6\Rightarrow x=90\\\frac{x}{20}=6\Rightarrow x=120\\\frac{x}{28}=6\Rightarrow x=168\end{cases}\)
Vậy \(x=90;y=120;z=168\)
Có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
Và: \(\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{372}{62}=6\)
\(\frac{x}{15}=6\Rightarrow z=90\)
\(\frac{y}{20}=6\Rightarrow y=120\)
\(\frac{z}{28}=6\Rightarrow z=168\)
Giải:
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{62}=\frac{372}{62}=6\)
+) \(\frac{2x}{30}=6\Rightarrow x=90\)
+) \(\frac{3y}{60}=6\Rightarrow y=120\)
+) \(\frac{z}{7}=6\Rightarrow z=42\)
Vậy x = 90; y = 120; z = 42
x/3=y/4 ; y/5=z/7 va 2x+3y-z=372
Ta có: \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Mà \(2x+3y-z=372\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{372}{62}=6\)
Vậy \(x=6.15=90\)
\(y=6.20=120\)
\(z=6.28=168\)
CHÚC BẠN HỌC TỐT!
TÌM X, Y BIẾT :
1) x/2=y=z/3 và 2x-3y+4z=(-24)
2) 2x=3y và x^2+y^2=52
3) 5x=2y và x^3=y^3=133
4) -2x=3y và x^2*y^3=72
5) x/5=y/-6=z/7 và y-z=35
6) x+1/3=y+2/4=z+3/5 và x+y+z=18
7) x/2=y/3, y/2=z/5 và x+y+z=50
x254n3jsm3,s3333
a) x/5=y/6=z/7 và x-y+z=36
b)x/5=y/-6=z/7 và x+y-z= 32
c) x/5=y/3=z/2 và 2x+3y+4z=54
d) x/5=y/2=z/3 và 2x-3y+5z=38
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a)\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}\)và\(x-y+z=36\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)
\(\Rightarrow\)\(x=5.6=30\)
\(y=6.6=36\)
\(z=7.6=30\)
b)\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\)và\(x+y-z=32\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{x+y-z}{5+\left(-6\right)-7}=\frac{32}{-8}=-4\)
\(\Rightarrow\)\(x=-4.5=-20\)
\(y=-4.-6=24\)
\(z=-4.7=-28\)
c)\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)và \(2x+3y+4z\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{2.5+3.3+4.2}\)\(=\frac{54}{27}=2\)
\(\Rightarrow\)\(x=2.5=10\)
\(y=2.3=6\)
\(z=2.2=4\)
d)\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}\)và \(2x-3y+5z=38\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+5z}{2.5-3.2+5.3}=\frac{38}{19}=2\)
\(\Rightarrow\)\(x=2.5=10\)
\(y=2.2=4\)
\(z=3.2=6\)
Hok tốt!
@Kaito Kid