cho 1/a+1/b+1/c=0 tinh 1/(a^2+2*b*c)+1/(b^2+2*a*c)+1/(c^2+2*b*a)
Cho a,b,c là cac số thực khác 0 , tổng bằng 0
Tinh S = 1/b^2+c^2-a^2 + 1/c^2+ a^2 -b^2 + 1/a^2 +b^2 -c^2
Vì a+b+c=0
\(\Rightarrow a=-\left(b+c\right)\)
\(\Rightarrow a^2=\left[-\left(b+c\right)\right]^2=b^2+2bc+c^2\)
Do đó \(\frac{1}{b^2+c^2-a^2}=\frac{1}{b^2+c^2-b^2-2bc-c^2}=-\frac{1}{2bc}\)
Tương tự \(\frac{1}{c^2+a^2-b^2}=-\frac{1}{2ca}\) và \(\frac{1}{a^2+b^2-c^2}=-\frac{1}{2ab}\)
Do đó \(S=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}.\frac{a+b+c}{abc}=0\)
cho a,b,c khac 0 va a+b+c=0 . tinh Q=\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)
a + b + c = 0 => c = -a - b ; b= -a - c ; a = - b - c
Thay vào Q ta có :
\(Q=\frac{1}{a^2+b^2-\left(a+b\right)^2}+\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{a^2+c^2-\left(a+c\right)^2}\)
\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{c^2+a^2-c^2-a^2-2ac}\)
\(Q=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{c+a+b}{-2abc}=0\)
Cho a, b, c là ba số thực khác 0 thỏa mãn các điều kiện: a+b+c=0 và 1/a+1/b+1/c=3 tinh (1+1/a)^2+(1+1/b)^2+(1+1/c)^2
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=9\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=9\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=9\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=9\)
\(\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2+\left(1+\frac{1}{c}\right)^2=3+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3+2.3+9=?\)
tinh m=1/(a^2+b^2-c^2)+1/(a^2-b^2+c^2)+1/(-a^2+b^2+c^2) biet a+b+c=0
Cho a+b+c=0
Tinh P =\(\dfrac{1}{a^2+b^2-c^2}+\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}\)
\(a+b+c=0\)
⇔ \(b+c=-a\)
⇔ \(b^2+c^2-a^2=-2bc\)
CMTT , ta có : \(a^2+b^2-c^2=-2ab;a^2+c^2-b^2=-2ac\)
Thay vào P , ta có :
\(P=\dfrac{1}{-2ab}+\dfrac{1}{-2bc}+\dfrac{1}{-2ac}=\dfrac{c+b+a}{-2abc}=0\) ( abc # 0 )
cho 1/(a^2-bc)+1/(b^2-ca)+1/(c^2-ca)=0
Tinh A= a/(a^2-bc)^2+b/(b^2-ca)^2+c/(c^2-ca)^2
Cho a,b,c thoa man a+b+c=6 va ( a-1)^3 +(b-2)^3 +(c-3)^3 =0. Tinh T = (a-1)^2n+1 + (b-2)^2n+1 + (c-3)^2n+1
Sử dụng:
\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)
Áp dụng vào bài:
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)
\(=\left(a-1+b-2+c-3\right)\)[ \(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)
\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]
<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))
<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
<=> a = 1 hoặc b = 2 hoặc c = 3.
Không mất tính tổng quát: g/s : a = 1
Khi đó: b + c =5
Ta có: \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)
\(=\left(b-2+c-3\right).A\)
\(=\left(b+c-5\right).A\)
\(=0.A=0\)
Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)
Tương tự b = 2; c= 3 thì T = 0.
Vậy T = 0.
1. Cho a,b,c>0 thỏa mãn 1/a+1/b+1/c=3.Tìm GTNN của P=1/a^2+1/b^2+1/c^2
2.Cho a,b,c khác 0 thỏa mãn a+b+c =0 và 1/a+1/b+1/c=7.Tính 1/a^2+1/b^2+1/c^2
3.Cho a<_b<_ c và a+b+c>0.Cm:a/b+b/c+c/a>_ b/a+c/b+a/c
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)
\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)
\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)
Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0
Mà abc > 0 nên A \(\ge\)0 => ....