Tìm x nguyên để các bt sau nguyên
a,\(\frac{2}{x-1}\)
b,\(\frac{3}{\sqrt{x}+1}\)
c, \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
d,\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
Tìm các giá trị của x để mỗi biểu thức sau xác định:
a) \(A=\sqrt{x-1}+\sqrt{3-x}\)
b) \(B=\frac{\sqrt{x-2}}{\sqrt{2x-1}}\)
c) \(C=\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}\right)\frac{2}{\sqrt{x}}\)
d) \(D=\left(\frac{3}{\sqrt{x}-1}+\frac{1}{x-4}\right)\frac{x-1}{\sqrt{x}+2}\)
\(a,\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)
\(1\le x\le3\)thì biểu thức được xác định
\(b,\frac{\sqrt{x-2}}{\sqrt{2x-1}}\)
để biểu thức đc xác định thì
\(\sqrt{x-2}\ge0\)
\(x\ge2\)
\(\sqrt{2x-1}\ne0< =>\sqrt{2x-1}>0\)
\(x>\frac{1}{2}\)
kết hợp điều kiện thì \(x\ge2\)
\(C=\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}.\frac{2}{\sqrt{x}}\)
\(C=\frac{2\sqrt{x}}{x-1}.\frac{2}{\sqrt{x}}\)
\(C=\frac{4}{x-1}\)
\(< =>x\ne0\)để biểu thức đc xđ
cho bt p= \(1-\left(\frac{2}{\sqrt{x}+2}-\frac{5\sqrt{x}}{4x-1}-\frac{1}{1-2\sqrt{x}}\right):\frac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
a) rút gọn p
b) tính giá trị của p nếu giá trị tuyệt đối của x=1
c) tính các gt của x để p=\(\frac{1}{2}\)
d) tìm các gt x nguyên để p nguyên
Cho \(A=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}\left(\frac{1}{1-\sqrt{x}}-1\right)\)
a, Rút gọn A
b, Tìm các giá trị nguyên của x để A nguyên
c, Tìm các giá trị của x để A = \(\sqrt{x}\)
Tìm ĐKXĐ và rút gọn biểu thức
\(A=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
\(B=\left(\frac{2\sqrt{x}-x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\frac{x-1}{x+\sqrt{x}+1}\)
\(C=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(D=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
CM rằng GT của bthức A ko phụ thuộc vào a
Tìm x để C = 4
Tìm x sao cho D < -1
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
1, cho biểu thức
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}+3}+\frac{3\sqrt{x}-2}{1-\sqrt{2}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, tìm đkxd và rút gọn
b, tính giá trị bt khi A khi \(x=3-2\sqrt{2}\)
c, tìm x để \(A=\frac{1}{2}\)
d, tìm \(x\in Z\) để bt A nhận giá trị Nguyên
<3 hóng các cao nhân ra tay nhé :3 !!! giúp mình nhé <3
Thuy Duong Nguyen đánh đề cẩn thận hơn bạn nhé
Lời giải :
a) ĐKXĐ : \(x\ne1\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+3\right)\left(2-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{15\sqrt{x}-11-3x+6-7\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b) \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}=\sqrt{2}-1\)
Khi đó \(A=\frac{2-5\left(\sqrt{2}-1\right)}{\sqrt{2}-1+3}\)
\(A=\frac{2-5\sqrt{2}+5}{\sqrt{2}+2}=\frac{7-5\sqrt{2}}{\sqrt{2}+2}\)
c) \(A=\frac{1}{2}\)
\(\Leftrightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)
\(\Leftrightarrow2\left(2-5\sqrt{x}\right)=\sqrt{x}+3\)
\(\Leftrightarrow4-10\sqrt{x}-\sqrt{x}-3=0\)
\(\Leftrightarrow1-11\sqrt{x}=0\)
\(\Leftrightarrow11\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{11}\)
\(\Leftrightarrow x=\frac{1}{121}\)( thỏa )
d) A nguyên \(\Leftrightarrow2-5\sqrt{x}⋮\sqrt{x}+3\)
\(\Leftrightarrow-5\left(\sqrt{x}+3\right)+17⋮\sqrt{x}+3\)
Vì \(-5\left(\sqrt{x}+3\right)⋮\sqrt{x}+3\)
\(\Rightarrow17⋮\sqrt{x}+3\)
\(\Rightarrow\sqrt{x}+3\inƯ\left(17\right)=\left\{17\right\}\)( vì \(\sqrt{x}+3\ge3\))
\(\Leftrightarrow\sqrt{x}=14\)
\(\Leftrightarrow x=196\)( thỏa )
Vậy....
\(a,ĐKXĐ:\orbr{\begin{cases}x+2\sqrt{x}+3\ne0\\\sqrt{x}+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{ }\sqrt{x}\ne-3\)
Rút gọn: p/s: sau phân số thứ 2 ở mẫu ko có x à? Bạn chép đề sai?
Hình như đề phần rút gọn sai nhé!
\(x+2\sqrt{x}+3\) không thể tách được
Và đa số mình làm mẫu sẽ không như này :\(1-\sqrt{2}\) ,phải có x nữa .
Bạn xem lại đề rồi mình sẽ làm tiếp
1. Cho bt A = \(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\) ( x ≥ 0; x # 1)
Tính các giá trị nguyên của x để A có giá trị nguyên
2.
2.1: Tính giá trị của bt B = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) khi x = \(\frac{\sqrt{3}+2}{2-\sqrt{3}}\)
2.2: Cho bt C = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right):\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
a) Tính giá trị của bt C tại x = 7 - 4\(\sqrt{3}\)
b) Tìm giá trị của x để C > 3
c) Tìm giá trị của x để \(\frac{B}{C}\left(x-1\right)=0\)
3. Cho bt D = \(\frac{x-4\sqrt{x}+1}{x-\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{\sqrt{x}-1}{\sqrt{x}-2}\)
a) Tính giá trị của D với x = 4 - 2\(\sqrt{3}\)
b) Tìm GTNN của D
4. Giải các PT:
a) \(\sqrt{x+3}-\sqrt{2x-5}=3\)
b) \(\sqrt{x^2+1}+\sqrt{4x^2-4x+5}=0\)
~ GIÚP MÌNH VỚI Ạ! ! ! GẤP!!
~ MÌnh CẢM ƠN nhiều!
I .cho C= \(\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{x}+2}+\frac{\sqrt{x}}{1-x}\)
a, rút gọn C
b, tính C vs x=\(\frac{4}{9}\)
c, tìm x để GTTĐ của C =\(\frac{1}{3}\)
II. cho P = \(\hept{\frac{\sqrt{x}-2}{x-1}}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1})X\frac{\left(1-x\right)^2}{2}\)
a, rút gọn P
b, chứng minh rằng nếu 0<x<1 thì P>0
III. Cho Q= \(\frac{2\sqrt{x-9}}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a, rút gọn Q
b, tìm các gtri x nguyên để Q có gtri nguyên
Câu 1: Cho biểu thức:\(D=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Rút gọn biểu thức b)Tìm x để D < 1 c) Tìm GT nguyên của x để D thuộc Z
Câu 2: Cho biểu thức: \(P=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
a) Rút gọn P b) Tính GT của P biết \(x=\frac{2}{2+\sqrt{3}}\)
Câu 3: Cho biểu thức: \(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Tìm GT của x để A xác định b) Rút gọn A c) Tìm x sao cho A > 1
Cho các bt: A=\(\frac{\sqrt{x}+1}{\sqrt{x}-4},B=\frac{2\sqrt{x}+1}{x-7\sqrt{x}+12}-\frac{\sqrt{x}+3}{\sqrt{x}-4}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a,tìm x để biểu thức B có nghĩa
b,Rút gọn bt B
c,Tìm x để M=B.A có gt nguyên
a, B= \(\frac{2\sqrt{x}+1}{x-7\sqrt{x}+12}-\frac{\sqrt{x}+3}{\sqrt{x}-4}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
<=> \(B=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-4}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
Để B có nghĩa
<=> \(\left\{{}\begin{matrix}\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)\ne0\\x\ge0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\sqrt{x}\ne4\\\sqrt{x}\ne3\\x\ge0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x\ne16\\x\ne9\\x\ge0\end{matrix}\right.\)
<=> \(x\ge0,x\ne16,x\ne9\)
Vậy để B có nghĩa <=> \(x\ge0,x\ne16,x\ne9\)
b, Có B=\(\frac{2\sqrt{x}+1}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-4}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)( đk: x\(\ge0\), \(x\ne16,x\ne9\))
<=> \(B=\frac{2\sqrt{x}+1-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{2\sqrt{x}+1-x+9+2x-8\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}\)=\(\frac{x-5\sqrt{x}+6}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}=\frac{x-2\sqrt{x}-3\sqrt{x}+6}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}-2}{\sqrt{x}-4}\)