\(CMR:Nếu\frac{a}{b}=\frac{c}{d}thì:\)
\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
CMR:Nếu \(\frac{a}{b}=\frac{c}{d}thì:\)
\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
CMR:Nếu a/b=c/d thì:
a)a/b-a = c/d-c
b)9a-7b/9a+7b = 9c-7d/9c+7d
c)\(\left(\frac{a+b}{c+d}\right)^3\)=\(\frac{a^3+b^3}{c^3+d^3}\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=b.k,c=d.k\)
a) Ta có: \(\frac{a}{b-a}=\frac{b.k}{b-b.k}=\frac{b.k}{b\left(1-k\right)}=\frac{k}{1-k}\) (1)
\(\frac{c}{d-c}=\frac{d.k}{d-d.k}=\frac{d.k}{d\left(1-k\right)}=\frac{k}{1-k}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\frac{a}{b-a}=\frac{c}{d-c}\)
Vậy \(\frac{a}{b-a}=\frac{c}{d-c}\)
b) Ta có: \(\frac{9a-7b}{9a+7b}=\frac{9.b.k-7.b}{9.b.k+7.b}=\frac{b.\left(9.k-7\right)}{b\left(9.k+7\right)}=\frac{9.k-7}{9.k+7}\) (1)
\(\frac{9c-7d}{9c+7d}=\frac{9.d.k-7.d}{9.d.k+7.d}=\frac{d.\left(9.k-7\right)}{d.\left(9.k+7\right)}=\frac{9.k-7}{9.k+7}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{9a-7b}{9a+7b}=\frac{9c-7d}{9c+7d}\)
Vậy \(\frac{9a-7b}{9a+7b}=\frac{9c-7d}{9c+7d}\)
c) Ta có: \(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{b.k+b}{d.k+d}\right)^3=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3\) (1)
\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(b.k\right)^3+b^3}{\left(d.k\right)^3+d^3}=\frac{b^3.k^3+b^3}{d^3.k^3+d^3}=\frac{b^3.\left(k^3+1\right)}{d^3.\left(k^3+1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
Vậy \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
chứng minh rằng: \(\frac{a}{c}=\frac{b}{c}=\frac{c}{d}thì\frac{a}{d}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
chứng minh rằng:
\(\frac{a}{c}=\frac{b}{c}=\frac{c}{d}thì\frac{a}{d}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
CHo \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) . CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{ \left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
Áp dụng tính chất.......
a/b=b/c=c/d=a+b+c/b+c+d suy ra (a/b)^3=(b/c)^3=(c/d)^3=(a+b+c)^3/(b+c+d)^3(1)
a/b= b/c=c/dsuy ra a^3/b^3=b^3/c^3=c^3/d^3(2)
Áp dụng tính chất .....
a^3/b^3=b^3/c^3=c^3/d^3=a^3+b^3+c^3/b^3+c^3+d^3 (3)
Từ 1,2 và 3 suy ra :a^3+b^3+c^3/b^3+c^3+d^3=(a+b+c)^3/(b+c+d)^3
Nếu\(\frac{a}{b}=\frac{c}{d}\)thì:
\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^{3+}d^3}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\left(k\in Z\right)\)
\(\Rightarrow a=bk,c=dk\)
Có :
\(\left(\frac{a+b}{c+d}\right)^3=\frac{\left(bk+b\right)^3}{\left(dk+d\right)^3}=\frac{\left[b\left(k+1\right)\right]^3}{\left[d\left(k+1\right)\right]^3}=\frac{b^3\left(k+1\right)^3}{d^3\left(k+1\right)^3}=\frac{b^3}{d^3}\)
\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\frac{b^3k^3+b^3}{d^3k^3+d^3}=\frac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\frac{b^3}{d^3}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\left(=\frac{b^3}{d^3}\right)\)
Vậy ...
a/b = c/d =K ( K thuộc N* )
a = bK
c = dK
thay vào 2 cái cần so sanh đó là ok
k cho mik nha
Ta có:
a/b=c/d => a/c=b/d = (a+b)/(c+d)=> (a/c)3=(b/d)3=(\(\frac{a+b}{c+d}\) )3 (1)Lại có: (a/c)3=(b/d)3 = a3/c3 = b3/d3 = \(\frac{a^3+b^3}{c^3+d^3}\)
Vậy (\(\frac{a+b}{c+d}\) )3 = \(\frac{a^3+b^3}{c^3+d^3}\)
\(\frac{a}{b}=\frac{c}{d}\)chứng mih rằng
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{axb}{cxd}\)
\(\frac{\left(a+b\right)^3}{\left(c+d\right)^3}=\frac{a^3-b^3}{c^3-d^3}\)
CMR : a, \(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{3a^3+2b^3}{3c^3+3d^3}\)
b,\(\frac{a^{10}+b^{10}}{\left(a+b\right)^{10}}=\frac{c^{10}+d^{10}}{\left(c+d\right)^{10}}\)
c,\(\frac{a^{2017}}{b^{2017}}=\frac{\left(a-c\right)^{2017}}{\left(b-d\right)^{2017}}\)
Cho \(\frac{a}{b}=\frac{c}{d}CMR\)
\(\frac{\left(a^2+b^2\right)^3}{\left(c^2+d^2\right)^3}=\frac{\left(a^3+b^3\right)^2}{\left(c^3+d^3\right)^2}\)
Ai nhanh vs gọn thì chọn cho
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\Rightarrow\left(\frac{a^2}{c^2}\right)^3=\frac{\left(a^2+b^2\right)^3}{\left(a^2+d^2\right)^3}=\frac{a^6}{c^6}\left(1\right)\)
\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3+b^3}{c^3+d^3}\Rightarrow\left(\frac{a^3}{c^3}\right)^2=\frac{\left(a^3+b^3\right)^2}{\left(a^3+d^3\right)^2}=\frac{a^6}{c^6}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{\left(a^2+b^2\right)^3}{\left(c^2+d^2\right)^3}=\frac{\left(a^3+b^3\right)^2}{\left(c^3+d^3\right)^2}\left(đpcm\right)\)