A=1+2^2+2^3+...+2^20
a) Tính B= 1+2+2^2+2^3+...+ 2^2008 / 1-2^2009
b) So sánh: A= 20^10+1/20^10-1 và B= 20^10-1 / 20^10-3
a) Đặt A = 1 + 2 + 22 + ... + 22008 (1)
=> 2A = 2 + 22 + 23 + ... + 22009 (2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = (2 + 22 + 23 + ... + 22009) - (1 + 2 + 22 + ... + 22008)
A = 22009 - 1
Khi đó B = \(\frac{2^{2009}-1}{1-2^{2009}}=\frac{2^{2009}-1}{-\left(2^{2009}-1\right)}=-1\)
b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}\)
=> A - 1 = \(\frac{20^{10}+1-20^{10}+1}{20^{10}}=\frac{2}{20^{10}}\)
Lại có B = \(\frac{20^{10}-1}{20^{10}-3}\)
=> B - 1 = \(\frac{20^{10}-1-20^{10}+3}{20^{10}-3}=\frac{2}{2^{10}-3}\)
Vì \(\frac{2}{2^{10}}< \frac{2}{2^{10}-3}\)
=> A - 1 < B - 1
=> A < B
a) \(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
Đặt \(Q=1+2+2^2+...+2^{2008}\)
\(2Q=2+2^2+2^3+...+2^{2009}\)
\(2Q-Q=2+2^2+2^3+...+2^{2009}-1-2-2^2-...-2^{2008}\)
\(\Rightarrow Q=2^{2009}-1\)
Ta thấy \(Q\) là số đối của \(2^{2009}-1\)
\(\Rightarrow B=-1\)
Vậy \(B=-1\).
b) Ta có: \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
Ta lại có: \(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\) nên \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)
\(\Rightarrow A< B\)
Vậy \(A< B\).
\(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
\(< =>2B=\frac{2+2^2+2^3+...+2^{2008}+2^{2009}}{1-2^{2009}}\)
\(< =>B=\frac{2^{2009}-1}{1-2^{2009}}=\frac{-\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)
A=(2/1+2)+(2+3/1+2+3)+...+(2+3+4+...+20/1+2+3+4+...+20)
Bài 7: Chứng tỏ rằng:
1/2^2 + 1/3^2 + 1/4^2 + ...1/100^2 < 3/4
Bài 8: So sánh A= 20^10 + 1 / 20^10 - 1 và B= 20^10 - 1 / 20^10 - 3.
8:
\(A=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
mà 20^10-1>20^10-3
nên A<B
tính A= 1+1/2*(1+2)+1/3*(1+2+3)+1/4*(1+2+3+4)+...+1/20*(1+2+3+...+20)
Tính A=1+1/2*[1+2]+1/3*[1+2+3]+1/4*[1+2+3+4]+.............+1/20*[1+2+3+....+20]
tính A=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+....+1/20(1+2+...+19+20)
cho A=1/2+1/2^2+1/2^3+......+1/2^20. chung minh a+1/2^20 =1
a) A=2/1+2 + 2+3/1+2+3 +.....+2+3+...+20/1+2+3+...+20
b) B=1.3.5.7....2017.2019/1011.1012....2020 - 1/21010
CÀNG NHANH CÀNG TỐT NHÉ !!!!
Thực hiện phép tính :
A = 1+ 1/2.(1+2) +1/3(1+2+3) + 1/4(1+2+3+4) +....+1/20 (1+2+3+.....+20)
Tính A = \(\frac{2}{1+2}+\frac{2+3}{1+2+3}+\frac{2+3+4}{1+2+3+4}+...+\frac{2+3+4+...+20}{1+2+3+4+...+20}\)