Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Thị Ngọc Anh

Những câu hỏi liên quan
Nguyễn Thị Minh Nguyệt
Xem chi tiết
tth_new
6 tháng 9 2020 lúc 16:34

Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.

Khách vãng lai đã xóa
Phan Nghĩa
7 tháng 9 2020 lúc 20:18

Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)

\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*

Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)

Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương 

Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)

\(x+y=c+a+4b\)\(y+z=a+b+4c\)\(z+x=b+c+4a\)

Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)

Áp dụng bất đẳng thức AM-GM ta có : 

\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)

\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)

\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)

Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)

Vậy ta có điều phải chứng minh

Khách vãng lai đã xóa
Bí Bầu
Xem chi tiết
alibaba nguyễn
13 tháng 10 2016 lúc 16:57

Ta có

\(1+\frac{b}{a}=\frac{a+b}{a}\ge2\frac{\sqrt{ab}}{a}\)

\(1+\frac{c}{b}\ge2\frac{\sqrt{bc}}{b}\)

\(1+\frac{a}{c}\ge2\frac{\sqrt{ac}}{c}\)

Nhân vế theo vế ta được

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\ge8\frac{\sqrt{ab.bc.ca}}{abc}=8\)

Dấu = xảy ra khi a = b = c hay tam giác ABC đều

trang huyen
Xem chi tiết
Thắng Nguyễn
5 tháng 4 2017 lúc 21:29

Bài 3: y hệt bài mình đã từng đăng Câu hỏi của Thắng Nguyễn - Toán lớp 9 - Học toán với OnlineMath- trước mình có ghi lời giải mà lâu ko xem giờ quên r` :)

Hà Trang
5 tháng 4 2017 lúc 23:09

1) Đặt n+1 = k^2

2n + 1 = m^2

Vì 2n + 1 là số lẻ => m^2 là số lẻ => m lẻ 

Đặt m = 2t+1

=> 2n+1 = m^2 = (2t+1)^2

=> 2n+1 = 41^2 + 4t + 1

=> n = 2t(t+1)

=> n là số chẵn

=> n+1 là số lẻ

=> k lẻ 

+) Vì k^2 = n+1

=> n = (k-1)(k+1)

Vì k -1 và k+1 là 2 số chẵn liên tiếp

=> (k+1)(k-1) chia hết cho * 

=> n chia hết cho 8

+) k^2 + m^2 = 3a + 2

=> k^2 và m^2 chia 3 dư 1

=> m^2 - k^2 chia hết cho 3

m^2 - k^2 = a

=> a chia hết cho 3

Mà 3 và 8 là 2 số nguyên tố cùng nhau

=> a chia hết cho 24

Hà Trang
5 tháng 4 2017 lúc 23:10

ấy nhầm, là n chứ không phải a nha :))

Bí Bầu
Xem chi tiết
alibaba nguyễn
13 tháng 10 2016 lúc 16:57

Ta có

\(1+\frac{b}{a}=\frac{a+b}{a}\ge2\frac{\sqrt{ab}}{a}\)

\(1+\frac{c}{b}\ge2\frac{\sqrt{bc}}{b}\)

\(1+\frac{a}{c}\ge2\frac{\sqrt{ac}}{c}\)

Nhân vế theo vế ta được

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\ge8\frac{\sqrt{ab.bc.ca}}{abc}=8\)

Dấu = xảy ra khi a = b = c hay tam giác ABC đều

Đoàn Phương Linh
Xem chi tiết
Phùng Minh Quân
31 tháng 1 2020 lúc 18:32

\(VT-VP=\frac{\Sigma_{cyc}\left(a-b+c\right)\left(a-b\right)^2}{abc}\ge0\) ( do a,b,c là 3 cạnh của 1 tam giác ) 

Khách vãng lai đã xóa
Nguyễn Thái Anh
Xem chi tiết
Vo Tuan Viet
30 tháng 8 2016 lúc 20:15

Bằng nhau

Đỗ Phúc Thiên
30 tháng 8 2016 lúc 21:59

a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .

liên hoàng
30 tháng 8 2016 lúc 23:12

ta áp dụng (a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)) >=9 

dễ chứng minh bdt phụ này 

rùi từ đây suy ra 3(a-b)(b-c)(c-a) = 0 => a=b=c (1)

mà lên bđt phụ trên thì xảy ra khi a=b=c (1)

từ (1) , (2) , ta suy ra a=b=c hay đpcm 

vì k chặt chẽ lắm nên thông cảm

Lê Trường Lân
Xem chi tiết
tth_new
27 tháng 5 2020 lúc 9:05

Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)

\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)

Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Ai có cách hay?

Khách vãng lai đã xóa
tth_new
27 tháng 5 2020 lúc 9:13

1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.

2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)

\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)

\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
27 tháng 5 2020 lúc 19:31

Thôi đành dồn về bậc dễ chịu hơn vậy :))
\(9=\frac{1}{a^3}+1+\frac{1}{a^3}+\frac{1}{b^3}+1+\frac{1}{b^3}+\frac{1}{c^3}+1+\frac{1}{c^3}\)

\(\ge\frac{3}{a^2}+\frac{3}{b^2}+\frac{3}{c^2}\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le3\)

Đến đây ta có đánh giá bằng 2 cách như sau:

Cách 1:

Theo Bunhiacopski ta dễ có:

\(\left[2a+\left(b+c\right)\right]^2\ge4\cdot2a\left(b+c\right)\Rightarrow\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{8a\left(b+c\right)}\)

\(\le\frac{1}{8}\left[\frac{1}{4a^2}+\frac{1}{\left(b+c\right)^2}\right]\le\frac{1}{8}\left[\frac{1}{4a^2}+\frac{1}{4bc}\right]\le\frac{1}{8}\left[\frac{1}{4a^2}+\frac{1}{8}\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\right]\)

Khi đó:

\(P\le\frac{1}{8}\left[\frac{1}{4a^2}+\frac{1}{8b^2}+\frac{1}{8c^2}+\frac{1}{4b^2}+\frac{1}{8a^2}+\frac{1}{8c^2}+\frac{1}{4c^2}+\frac{1}{8a^2}+\frac{1}{8b^2}\right]=\frac{3}{16}\)

Cách 2:

Áp dụng liên tiếp BĐT phụ dạng \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) ta dễ có rằng:

\(\frac{1}{\left(2a+b+c\right)^2}=\left(\frac{1}{2a+b+c}\right)^2=\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2=\frac{1}{16}\left[\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(a+c\right)^2}+\frac{2}{\left(a+b\right)\left(a+c\right)}\right]\)

\(\Rightarrow16P\le\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(c+a\right)^2}+\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(b+c\right)\left(c+a\right)}+\frac{2}{\left(c+a\right)\left(a+b\right)}\)

\(\le\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)

\(\le4\cdot\frac{1}{16}\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2+\left(\frac{1}{c}+\frac{1}{a}\right)^2\right]\)

\(=\frac{1}{2}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\le\frac{1}{2}\cdot\left(3+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le3\)

\(\Rightarrow P\le\frac{3}{16}\)

Đẳng thức xảy ra tại a=b=c=1

Khách vãng lai đã xóa
Tiến Nguyễn Minh
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 22:19

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:26

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:35

4c, 

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}=a+b+c-\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}+3--\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}\)\(\ge6-2\cdot\frac{\left(a+b+c\right)}{2}=3\)

Khách vãng lai đã xóa
tth_new
Xem chi tiết