3.
4.
5.
Tính : a, 1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n+1)
b, 1.2.3 + 3.4.5 + 5.6.7 + 98.99.100
549 + X = 1326
X = 1326 - 549
X = 777
X - 636 = 5618
X = 5618 + 636
X = 6254
549 ,1326 ở đâu zậy bạn !!! :/
P = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/n(n+1)(n+2)
S = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/48.49.50 .
tao có:
2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)
2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)
2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)
2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)
2p=1/1.2-1/(n+1).(n+2)
2p=(n+!).(n+2)-2/(2n+2).(n+2)
suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)
2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50
2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49
2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50
2s=1/1.2-1/49.50
'2s=1/2-1/2450
2s=1225/2450-1/2450
2s=1224/2450
s=612/1225
\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1
\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)
\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)
S cx tinh giong v
Câu5: Tính : 1.2.3+2.3.4+3.4.5+...................+28.29.30.Từ đó cho biết kết quả của tổng : 1.2.3+2.3.4+3.4.5+............................+(n-1).n.(n+1) theo n
(với n là số tự nhiên khác 0 )
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30
4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)
4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30
4A = 28.29.30.31 - 0.1.2.3
4A = 28.29.30.31
\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)
Theo cách tính trên ta dễ dàng tính được:
1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)
1.2.3+2.3.4+3.4.5+...+98.99.100
Coi A = 1.2.3 + 2.3.4 +... + 98.99.100
4A = 1.2.3.4 + 2.3.4.4 +... + 98.99.100.4
4A = 1.2.3.4 + 2.3.4.(5-1) +... + 98.99.100.(101-97)
4A = 1.2.3.4+2.3.4.5-1.2.3.4 + ... + 98.99.100.101-97.98.99.100
4A = 98.99.100.101
4A =97990200
A = 97990200: 4
A=24497550
Tinh nhanh
A= \(1.2.3+2.3.4+3.4.5+...+48.49.50\)
B = \(1.2.3+2.3.4+3.4.5+...+n.\left(n+1\right).\left(n+2\right)\)
A = 1.2.3 + 2.3.4 + ....+ 48.49.50
=> 4A = 1.2.3.4 + 2.3.4.(5-1) + ...+ 48.49.50.(51-17)
= 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + .....+ 48.49.50.51 - 47.48.49.50
= 48.49.50.51
=> A = 48.49.50.51:4 = 12.49.50.51
bài b) làm tương tự nha
1.2.3 + 2.3.4 + 3.4.5
1.2.3+3.4.5+...+99.100.101
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Đặt S = 1,2 + 2,3 + 3,4 + ... + 99.100
3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3 + 99.100.3
3S = 1.2.3 + 2.3 ( 4 - 1 ) + 3.4 ( 5 - 2 ) + ... + 98.99 ( 100 - 97 ) + 99.100 ( 101 - 98 )
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... - 97.98.99 + 99.100.101 - 98.99.100
S = 33.100.101 = 333300
Vậy S bằng 333300
Đáp số : S : 333300
Đặt S=1.2.3+2.3.4+....+99.100.101
3S=1.2.3+2.3.3+3.4.3+....+98.99.3+100.101.3
3S=1.2.3+2.3(4-1)+3.4(5-2)+.....+98.99+99.100(101-98)
3S=1.2.3+2.3.4-1.2.3+3.4.5+3.4.5-2.3.4+......+97.98.99+99.100.101-98.99.100
3S=33.100.101=333300
Vậy S=333300
A= 1.2.3 + 2.3.4 + 3.4.5 + ... + 98.99.100
A= 1.2.3 + 2.3.4 + 3.4.5 +.....+ 98.99.100
4A = 98.99.100.4 + .....+ 3.4.5.4 + 2.3.4.4 + 1.2.3.4
4A = 98.99.100.(101-97) +... + 2.3.4.(5-1) + 1.2.3.4
4A = 98.99.100.101 - 97.98.99.100+......+2.3.4.5 - 1.2.3.4 + 1.2.3.4
4A = 98.99.100.101
A = 98.99.100.101 : 4
A = 24497550
V1.2.3+2.3.4+3.4.5+...............+19.20.21