cho a,b,c khac 0 va thoa man 2ab+1/2b = 6bc+1/3c = 3ac+1/a chung minh a=2b=3c
cho a , b , c là 3 só thực dương thỏa mãn : a + 2b + 3c = 1 . Tìm max của \(P=\frac{6bc}{\sqrt{a+6bc}}+\frac{3ac}{\sqrt{2b+3ac}}+\frac{2ab}{\sqrt{3c+2ab}}\)
Dặt x=a, y=2b,z=3c
Khi đó
\(P=\frac{yz}{\sqrt{x+yz}}+\frac{xz}{\sqrt{y+xz}}+\frac{xy}{\sqrt{z+xy}}\)và x+y+z=1
Ta có \(\frac{yz}{\sqrt{x+yz}}=\frac{yz}{\sqrt{x\left(x+y+z\right)+yz}}=\frac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}yz\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{xz}{x+y}+\frac{yz}{x+y}\right)+\frac{1}{2}\left(\frac{xy}{y+z}+\frac{xz}{y+z}\right)+...=\frac{1}{2}\left(x+y+z\right)\)
\(=\frac{1}{2}\)
Vậy \(MaxP=\frac{1}{2}\)khi x=y=z=1/3 hay \(\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\\c=\frac{1}{9}\end{cases}}\)
cho các số dương a,b,c thỏa mãn a+2b+3c=3. chứng minh a^2/(a+2b+căn 2ab)+4b^2/(2b+3c+căn 6bc)+9c^2/(3c+a+cawn 3ac)>=1
cho a , b , c là 3 số thực dương thỏa mãn a + 2b + 3c = 1 . Tìm max của biểu thức : \(P=\frac{6bc}{\sqrt{a+6bc}}+\frac{3ac}{\sqrt{2b+3ac}}+\frac{2ab}{\sqrt{3c+2ab}}\)
Cho a,b,c>0 thỏa mãn a+2b+3c=1
CMR: \(\frac{2ab}{a^2+4b^2}+\frac{6bc}{4b^2+9c^2}+\frac{3ac}{9c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\right)\ge\frac{15}{4}\)
chi a,,b,c thoa man (a+2b)(2b+3c)(3c+a)khac 0 va
\(\frac{a^2}{a+2b}+\frac{4b^2}{2b+3c}+\frac{9c^2}{3c+a}=\frac{a^2}{2b+3c}+\frac{4b^2}{a+3c}+\frac{9c^2}{a+2b}\)
cmr;\(\frac{a}{6}=\frac{b}{3}=\frac{c}{2}\)
Cho biểu thức
M = \(\left(a+1\right)^2+\left(2b+1\right)^2+\left(3c+1\right)^2+2\left(2ab+3ac+6bc\right)+2\left(a+2b+3c\right)\)
và N = \(\left(a+2b+3c+1\right)^2\)
Tính hiệu \(M-N\)
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024
A.
$a^2+4b^2+9c^2=2ab+6bc+3ac$
$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$
$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$
$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$
$\Rightarrow a-2b=a-3c=2b-3c=0$
$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$
B.
$x^2+2xy+6x+6y+2y^2+8=0$
$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$
$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$
$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)
$\Rightarrow -1\leq x+y+3\leq 1$
$\Rightarrow -4\leq x+y\leq -2$
$\Rightarrow 2020\leq x+y+2024\leq 2022$
$\Rightarrow A_{\min}=2020; A_{\max}=2022$
Ko thèm tick cho người ta mà đòi hỏi câu khác ✅
Cho cac so a;b;c;d thoa man -2<a;b;c;d<5 va a+2b+3c+5d=10 . CM a^2+2b^2+3c^2+5d^2<140