So sánh
a,(1+2+3+4)2 và 13+23+33+43
b,194 và 16.18.20.22
So sánh:
a) ( 1 + 2 + 3 + 4 ) 2 và 1 3 + 2 3 + 3 3 + 4 3
b) 19 4 và 16 . 18 . 20 . 22
So sánh:
a, 1 + 2 + 3 + 4 3 và 1 3 + 2 3 + 3 3 + 4 3
b, 19 4 và 16.18.20.22
a, 1 + 2 + 3 + 4 3 = 100; 1 3 + 2 3 + 3 3 + 4 3 = 100 nên 1 + 2 + 3 + 4 3 = 1 3 + 2 3 + 3 3 + 4 3
Vậy 1 + 2 + 3 + 4 3 = 1 3 + 2 3 + 3 3 + 4 3
b, 16.18.20.22 = (19 – 3)(19 – 1)(19 + 1)(19 + 3)
= (19 – 3)(19+3)(19 – 1)(19 + 1)
= ( 19 2 – 9)( 19 2 – 1)
= 19 4 - 9 . 19 2 - 19 2 + 9
= 19 4 - 10 . 19 2 + 9 < 19 4
Vậy 16.18.20.22 < 19 4
So sánh
a.2\(\sqrt{29}\) và 3\(\sqrt{13}\)
b.\(\dfrac{5}{4}\)\(\sqrt{2}\) và \(\dfrac{3}{2}\)\(\sqrt{\dfrac{3}{2}}\)
c.5\(\sqrt{2}\) và 4\(\sqrt{3}\)
d.\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}\) và 6\(\sqrt{\dfrac{1}{37}}\)
a)
Có:
\(2\sqrt{29}=\sqrt{4.29}=\sqrt{116}\\ 3\sqrt{13}=\sqrt{9.13}=\sqrt{117}\)
Vì \(\sqrt{117}>\sqrt{116}\) nên \(3\sqrt{13}>2\sqrt{29}\)
b)
Có:
\(\dfrac{5}{4}\sqrt{2}=\sqrt{\dfrac{25}{16}.2}=\sqrt{\dfrac{25}{8}}\)
\(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}=\sqrt{\dfrac{9}{4}.\dfrac{3}{2}}=\sqrt{\dfrac{27}{8}}\)
Do \(\sqrt{\dfrac{27}{8}}>\sqrt{\dfrac{25}{8}}\) nên \(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}>\dfrac{5}{4}\sqrt{2}\)
c)
Có:
\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)
\(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)
Vì \(\sqrt{50}>\sqrt{48}\) nên \(5\sqrt{2}>4\sqrt{3}\)
d)
Có:
\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}=\sqrt{\dfrac{25}{4}.\dfrac{1}{6}}=\sqrt{\dfrac{25}{24}}\)
\(6\sqrt{\dfrac{1}{37}}=\sqrt{36.\dfrac{1}{37}}=\sqrt{\dfrac{36}{37}}\)
lại có: \(\dfrac{25}{24}>\dfrac{36}{37}\)
\(\Rightarrow\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{37}}\)
1.tìm x thuộc N sao
a,-3/10 < -36/x < 12/41
b, x/9 < 8/x < x/7
2.So sánh
a, 2022/2021 và 2002/2001
b, 2012/2013 và 2015/2018
c, 23/33 và 27/37
nhanh nha 20 phút nx mik học rồi
a) x lớn hơn 120
b) x=8
2) a) 2002/2001 lớn hơn
b) 2015/2018 lớn hơn
c) 27/37 lớn hơn
Đúng thì like giúp mik nha. Thx bạn
So sánh:
194 và 16.18.20.22
Ta có:
194<16.18 vì 16.18=288
=>194<16.18.20.22
so sánh
a/ (1+2+3+4)^2 và 1^3+2^3+3^+4^3
b/ 19^4 và 16.18.20.22
a: \(\left(1+2+3+4\right)^2=10^2=100\)
\(1^3+2^3+3^3+4^3=1+8+27+64=100\)
Do đó: \(\left(1+2+3+4\right)^2=1^3+2^3+3^3+4^3\)
b: \(19^4=130321\)
\(16\cdot18\cdot20\cdot22=126720\)
mà 130321>126720
nên \(19^4>16\cdot18\cdot20\cdot22\)
So sánh:
a) (1+2+3+4)^2 và 1^3+2^3+3^3+4^3
b) 19^4 và 16.18.20.22
SO SÁNH
(1+2+3+4)2 và 1^3+2^3+4^3
19^4 và 16.18.20.22
a) Ta có: (1 + 2 + 3 + 4)^2 = 10^2 = 100
1^3 + 2^3 + 4^3 = 1 + 8 + 64 = 9 + 64 = 75
Vì 100 > 75 nên (1 + 2 + 3 + 4)^2 > 1^3 + 2^3 + 4^3
so sánh
a) \(4+\sqrt{33}\) và \(\sqrt{29}+\sqrt{14}\)
b) \(\sqrt{26}-\sqrt{3}-\sqrt{2009}\) và -42
a: \(\left(4+\sqrt{33}\right)^2=49+8\sqrt{33}=49+2\cdot\sqrt{528}\)
\(\left(\sqrt{29}+\sqrt{14}\right)^2=43+2\cdot\sqrt{29\cdot14}=43+2\cdot\sqrt{406}\)
mà 49>43 và 528>406
nên \(\left(4+\sqrt{33}\right)^2>\left(\sqrt{29}+\sqrt{14}\right)^2\)
=>\(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
So sánh
( 1+2+3+4)^2 và 1^2+2^2+3^2+4^2
19^4 và 16.18.20.22
10^30 và 2^100