Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2018 lúc 14:48

Cách giải bài toán bằng cách lập phương trình cực hay: Bài toán so sánh, thêm bớt | Toán lớp 8

Vậy số dãy ghế ban đầu là 10 dãy và số người ngồi trên 1 dãy là 8 người.

Nguyễn Trần Thảo Nguyên
17 tháng 5 2021 lúc 15:26
1day là 8 người
Khách vãng lai đã xóa
Nguyễn Lê Quỳnh Chi
Xem chi tiết
Jeon_Jung_Kook (Team BTS...
13 tháng 12 2017 lúc 15:48

Câu hỏi tương tự nha bạn

Huỳnh Quang Sang
15 tháng 2 2018 lúc 20:41

Gọi số dãy ghế ban đầu là a [a>0 ,a thuộc N]

=>Số người trên mỗi dãy ghế là : \(\frac{70}{a}\)

Khi bớt đi 2 dãy ghế => Số dãy ghế còn lại là : a-2

Số người trên mỗi dãy ghế lúc đó là : \(\frac{70}{a-2}\)

Theo bài ra ta có : \(\frac{70}{a}+4=\frac{70}{a-2}\)

=> 70[a-2]+4a[a-2]=70a =>35[a-2]+2a[a-2]=35a

=> 35a-70+2a\(^2\)-4a=35a

=> 2a\(^2\)-4a-70=0

=> \(a^2-2a-35=0=>a^2-2a+1-36=0=>\left[a-1^2\right]=36=6^2\). Có 2 trường hợp

Trường hợp 1 : a-1 = -6 => a = - 5 [loại]

Trường hợp 2 : a - 1 = 6 => a = 7

Còn đây bạn làm nốt tiếp

Vậy phòng họp lúc đầu có 7 dãy ghế và 10 người

Ngo Tung Lam
19 tháng 2 2018 lúc 20:20

Gọi x là số ghế lúc đầu \(\left(x\inℤ;x>2\right)\)

Ta có phương trình \(\frac{70}{x-2}-\frac{70}{x}=4\)

Giải phương trình được x = 7 ; x = -5

Chỉ có x = 7 thỏa mãn điều kiện đề bài

Vậy lúc đầu phòng họp có 7 dãy ghế và mỗi dãy có 10 người

???
Xem chi tiết
Linh Linh
30 tháng 3 2019 lúc 12:04

Gọi x là số dãy ghế; y là số người trên mỗi dãy ghế (x,y>0) 
Ta có tổng cộng 80 người nên x*y =80 <=> x =80/y (1) 
Nếu bớt đi 2 dãy ghế tức x-2 thì mỗi dãy còn lại phải xếp thêm 2 người tức y+2 
Ta có: (x-2)*(y+2) = 80 (2) 
Thay (1) vào (2) ta có: 2y^2 +4y -160 =0 
<=> y=8 => x=10 
Vậy có 10 dãy ghế và có 8 người trên mỗi dãy

Aug.21
30 tháng 3 2019 lúc 12:08

Gọi x là số dãy ghế trong phòng họp ( x nguyên ; x>2)

Số người ngồi trên 1 dãy là \(\frac{80}{x}\)(người)

Nếu bới đi 2 dãy thì số dãy ghế còn lại là : x - 2 (dãy)

Số người ngồi trên mỗi dãy sẽ là: \(\frac{80}{x-2}\)(người )

Ta có phương trình :

\(\frac{80}{x-2}-\frac{80}{x}=2\Leftrightarrow\frac{40}{x-2}-\frac{40}{x}=1\Leftrightarrow x^2-2x-80=0\)

Giaỉ phương trình ta được \(x_1=10;x_2=-8\left(lọai\right)\)

Vậy số dãy ghế lúc đầu là 10 dãy và mỗi dãy xếp 8 người ngồi

-DJ Huy Vũ
Xem chi tiết
Dich Duong Thien Ty
1 tháng 6 2015 lúc 19:40

 Gọi số dãy là x, số người ngồi trong mỗi dãy là y dk:...
Theo bài ra ra có xy =70 (1)
Nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người ngồi mới đủ chỗ
=> (x-2)(y+4) = 70 (2)
Từ (1) và (2) ta có hệ phương trình...................
Giải ra được x = 7 ; y = 10

Chu Diệp Khanh
17 tháng 5 2021 lúc 14:30

em học lớp 5 nên ko bt đâu ạ

Khách vãng lai đã xóa
Nguyễn Trần Thảo Nguyên
17 tháng 5 2021 lúc 15:24
X=7 ,x=10 nhé
Khách vãng lai đã xóa
Nguyên Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 5 2023 lúc 20:38

Gọi số dãy lúc đầu là x

Theo đề, ta có: 70/(x-2)-70/x=4

=>(70x-70x+140)/(x^2-2x)=4

=>4x^2-8x-140=0

=>x=7

Minh Phương
28 tháng 5 2023 lúc 19:27

Gọi số dãy ghế lúc đầu là x(x \(\in\) N* , x > 0)

Số ghế mỗi dãy: \(\dfrac{70}{x}\) (ghế)

Nếu bớt đi 2 dãy ghế ngồi thì mỗi dãy còn lại phải xếp thêm 4 người mới đủ chỗ ngồi.

\(\Rightarrow\left(x-2\right)\left(\dfrac{70}{x}+4\right)=70\) 

\(\Rightarrow4x-\dfrac{140}{x}+62=70\) 

\(\Rightarrow4x^2-140+62x=70x\) (do x \(\in\) N* )

\(\Rightarrow4x^2-8x-140=0\) 

\(\Rightarrow x=-5\left(l\right);x=7\left(n\right)\)  

Vậy lúc đầu phòng họp có 7 dãy ghế.

 

 

Ngọc
Xem chi tiết

Gọi số dãy ghế lúc ban đầu là x(dãy)

(Điều kiện: \(x\in Z^+\))

Số người ngồi trên 1 dãy ghế ban đầu là \(\dfrac{80}{x}\left(người\right)\)

Số dãy ghế khi bớt đi 2 dãy là x-2(dãy)

Số người ngồi trên 1 dãy ghế khi bớt đi 2 dãy ghế là \(\dfrac{80}{x-2}\left(người\right)\)

Theo đề, ta có phương trình:

\(\dfrac{80}{x-2}-\dfrac{80}{x}=2\)

=>\(\dfrac{80x-80\left(x-2\right)}{x\left(x-2\right)}=2\)

=>\(\dfrac{160}{x\left(x-2\right)}=2\)

=>x(x-2)=80

=>\(x^2-2x-80=0\)

=>(x-10)(x+8)=0

=>\(\left[{}\begin{matrix}x-10=0\\x+8=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=10\left(nhận\right)\\x=-8\left(loại\right)\end{matrix}\right.\)

Vậy: Số dãy ghế ban đầu là 10 dãy

Số người ngồi trên 1 dãy ban đầu là 80:10=8 người

Thu An
Xem chi tiết
Vũ Tùng Đăng
16 tháng 1 2019 lúc 22:31

bài mẫu nè:

gọi số dãy ghế là x, số ghê là y 
theo đb ta có hpt 
(x-2)(y+2)=288 
xy=288 
giải pt tìm đk x=18; y=16 

titanic
Xem chi tiết
Bùi Thế Hào
5 tháng 4 2017 lúc 15:09

Gọi số dãy ghế ban đầu là a (a>0 và a thuộc N)

=> Số người trên mỗi dãy ghế là \(\frac{70}{a}\)

Khi bớt đi 2 dãy ghế => Số dãy ghế còn lại là: a-2

Số người trên mỗi dãy ghế lúc đó là: \(\frac{70}{a-2}\)

Theo bài ra ta có: \(\frac{70}{a}\)+4=\(\frac{70}{a-2}\)

<=> 70(a-2)+4a(a-2)=70a <=> 35(a-2)+2a(a-2)=35a

<=> 35a-70+2a2-4a=35a

<=> 2a2-4a-70=0

<=> a2-2a-35=0 <=> a2-2a+1-36=0 => (a-1)2=36=62. Có 2 TH:

+/ TH1: a-1=-6; => a=-5 (loại)

+/ TH2: a-1=6; => a=7

Vậy phòng họp lúc đầu có số dãy ghế là 7; mỗi ghế có 70:7=10 người ngồi

ĐS: 7 dãy ghế

Nguyễn Hoàng Hiệp
Xem chi tiết