\(=\frac{40}{a-20}=\frac{50}{b-68}=\frac{28}{c-21}a\cdot b\cdot c=22400\)
a) \(\left(-\frac{40}{51}\cdot0,32\cdot\frac{17}{20}\right):\frac{64}{75}\)
b) \(-\frac{10}{11}\cdot\frac{8}{9}+\frac{7}{18}\cdot\frac{10}{11}\)
c) \(\frac{3}{14}:\frac{1}{28}-\frac{13}{21}:\frac{11}{28}+\frac{29}{42}:\frac{1}{28}-8\)
a ) \(\left(-\frac{40}{51}.0,32.\frac{17}{20}\right):\frac{64}{75}\)
\(=\left(-\frac{40}{51}.\frac{8}{25}.\frac{17}{20}\right):\frac{64}{75}\)
\(=\left(\frac{-40.8.17}{51.25.20}\right):\frac{64}{75}\)
\(=\left(\frac{-16}{75}\right).\frac{75}{64}\)
\(=\frac{-1}{1}.\frac{1}{4}=-\frac{1}{4}\)
tìm x , y , z biết :
a) \(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\) và x.y = 1200
b) \(\frac{40}{x-30}=\frac{20}{y-50}=\frac{28}{z-21}\) và x.y.z = 22400
c) 15x = -10y = 6z và x.y.z = 30000
Câu a và câu b khó quá nên minh chí giúp bn câu b thôi!
c chứ ko phải b nha bn mình viết nhầm
tìm x, y , z biết :
a)\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\) và x.y = 1200
b) \(\frac{40}{x-30}=\frac{20}{y-50}=\frac{28}{z-21}\) và x.y.z = 22400
c) \(15x=-10y=6z\) và x.y.z = 30000
\(\Rightarrow\left[\begin{array}{nghiempt}x-9=15k\\y-12=20k\\z-24=40k\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=15k+9\\y=20k+12\\z=40k+24\end{array}\right.}\)
ta có:
x.y=1200\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\Rightarrow\frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}=k\)
=> (15k+9)(20k+12)=1200
=> 3.4(5k+3)(5k+3)=1200
=> (5k+3)2=100
=> 5k+3=\(\pm\)10
=> \(\left[\begin{array}{nghiempt}5k+3=10\\5k+3=-10\end{cases}\Rightarrow\left[\begin{array}{nghiempt}5k=7\\5k=-13\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}k=\frac{7}{5}\\k=-\frac{13}{5}\end{array}\right.}\)
* với k=7/5
x=7/5x15+9=30
y=7/5x20+12=40
z=7/5x40+24=80
* với k=-13/5
x=-13/5x15+9=-30
y=-13/5x20+12=-40
z=-13/5x40+24=-80
b)
\(\frac{40}{x-30}=\frac{20}{y-50}=\frac{28}{z-21}\Rightarrow\frac{x-30}{40}=\frac{y-50}{20}=\frac{z-21}{28}k=\)
=>\(\left[\begin{array}{nghiempt}x-30=40k\\y-50=20k\\z-21=28k\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=40k+30\\y=20k+50\\z=28k+21\end{array}\right.}\)
ta có:
x.y.z=22400
=> (40k+30)(20k+50)(28k+21)=22400
c) 15x=-10y=6z
\(\Rightarrow\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\Rightarrow\frac{x}{2}=-\frac{y}{3}=\frac{z}{5}=k\)
=> \(\left[\begin{array}{nghiempt}x=2k\\y=-3k\\z=5k\end{array}\right.\)
ta có:
x.y.z=30000
=> 2k.(-3k).5k=30000
=> k3=1000
=> k=10
ta có: x=10x2=20
y=10.(-3)=-30
z=10.5=50
Tìm a, b, c biết: \(\frac{3\cdot a-2\cdot b}{5}=\frac{2\cdot c-5\cdot a}{3}=\frac{5\cdot b-3\cdot c}{2}\)và a+b+c= -50
Lời giải:
$\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}$
$=\frac{5(3a-2b)}{25}=\frac{3(2c-5a)}{9}=\frac{2(5b-3c)}{4}$
$=\frac{5(3a-2b)+3(2c-5a)+2(5b-3c)}{25+9+4}=\frac{0}{25+9+4}=0$
$\Rightarrow 3a-2b=2c-5a=5b-3c=0$
$\Rightarrow 3a=2b; 2c=5a$
$\Rightarrow \frac{a}{2}=\frac{b}{3}=\frac{c}{5}$
Áp dụng TCDTSBN:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5$
$\Rightarrow a=(-5).2=-10; b=(-5).3=-15; c=(-5).5=-25$
Tìm 3 số a,b,c biết: \(\frac{3\cdot a-2\cdot b}{5}=\frac{2\cdot c-5\cdot a}{3}=\frac{5\cdot b-3\cdot c}{2}\) và a+b+c=-50
Cho \(\frac{40}{x-30}=\frac{20}{y-50}=\frac{28}{z-21};xyz=22400\).tìm x,y,z
\(Cho\frac{ab}{b}=\frac{bc}{a}=\frac{ca}{c}.CMR:\left(abc\right)^{123}\cdot a^{40}\cdot b^{41}\cdot c^{42}\)
tính bằng cách thuận tiện nhất
a,\(\frac{6}{7}\cdot\frac{16}{15}\cdot\frac{7}{6}\cdot\frac{21}{32}\)b, \(\frac{21}{17}\cdot\frac{13}{14}\cdot56\cdot\frac{3}{42}\) c,\(\frac{7}{4}\cdot\frac{11}{21}+\frac{11}{21}\cdot\frac{5}{4}\) d,\(\frac{23}{14}\cdot\frac{6}{14}-\frac{9}{14}\cdot\frac{6}{13}\)
a, \(\frac{6}{7}.\frac{16}{15}.\frac{7}{6}.\frac{21}{32}=\frac{6}{7}.\frac{7}{6}.\frac{16}{15}.\frac{21}{32}\)=\(1.\frac{16}{15}.\frac{21}{32}=\frac{7}{5.2}=\frac{7}{10}\)
Phần b T2
c,\(\frac{7}{4}.\frac{11}{21}+\frac{11}{21}.\frac{5}{4}=\frac{11}{21}.\left(\frac{7}{4}+\frac{5}{4}\right)\)=\(\frac{11}{21}.3=\frac{11}{7}\)
\(a,\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)
\(b,5\cdot\frac{7}{5}\) \(c,\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}\)
\(d,4\cdot11\cdot\frac{3}{4}\cdot\frac{9}{121}\)
\(e,\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}:\frac{-21}{20}\)
\(g,2\frac{1}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\left(\frac{2}{3}+0,4\cdot5\right)\right]\)
a) Ta có: \(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)
\(=\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{9}{4}\cdot\frac{8}{3}\)
\(=4\cdot\frac{-1}{3}\cdot\frac{4}{7}\cdot3\)
\(=12\cdot\frac{-4}{21}=\frac{-48}{21}=\frac{-16}{7}\)
b) Ta có: \(5\cdot\frac{7}{5}=\frac{35}{5}=7\)
c) Ta có: \(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}\)
\(=\frac{5}{9}\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)\)
\(=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
d) Ta có: \(4\cdot11\cdot\frac{3}{4}\cdot\frac{9}{121}\)
\(=\frac{4\cdot11\cdot3\cdot9}{4\cdot121}=\frac{27}{11}\)
e) Ta có: \(\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}:\frac{-21}{20}\)
\(=\frac{4}{3}+\frac{4}{3}=\frac{8}{3}\)
g) Ta có: \(2\frac{1}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\left(\frac{2}{3}+0,4\cdot5\right)\right]\)
\(=\frac{7}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\frac{2}{3}+2\right]\)
\(=\frac{7}{3}-\frac{1}{3}\cdot\frac{7}{6}\)
\(=\frac{7}{3}-\frac{7}{18}=\frac{42}{18}-\frac{7}{18}=\frac{35}{18}\)
) Ta có: 1615⋅−514⋅5424⋅56211615⋅−514⋅5424⋅5621
=1615⋅−514⋅94⋅83=1615⋅−514⋅94⋅83
=4⋅−13⋅47⋅3=4⋅−13⋅47⋅3
=12⋅−421=−4821=−167=12⋅−421=−4821=−167
b) Ta có: 5⋅75=355=75⋅75=355=7
c) Ta có: 17⋅59+59⋅17+59⋅3717⋅59+59⋅17+59⋅37
=59(17+17+37)=59(17+17+37)
=59⋅57=2563=59⋅57=2563
d) Ta có: 4⋅11⋅34⋅91214⋅11⋅34⋅9121
=4⋅11⋅3⋅94⋅121=2711=4⋅11⋅3⋅94⋅121=2711
e) Ta có: 34⋅169−75:−212034⋅169−75:−2120
=43+43=83=43+43=83
g) Ta có: 213−13⋅[−32+(23+0,4⋅5)]213−13⋅[−32+(23+0,4⋅5)]
=73−13⋅[−32+23+2]=73−13⋅[−32+23+2]
=73−13⋅76=73−13⋅76
=73−718=4218−718=3518