cho da thuc x^2+x+1 vo nghiem
chung minh da thuc f(x) = x^8 - x^5 + x^2 +1 vo nghiem
Giả sử f(x) tồn tại giá trị nghiệm n bất kì nào đó ( n\(\in\) R )
Khi đó f(x) = x8+ x2 - x5 +1= 0 (1)
Xét các trường hợp của x5, ta có:
TH1: x5 là số âm \(\Rightarrow\) x8+ x2 - x5 +1 = x8+ x2 - (- x5) +1 = x8+ x2 +x5+ 1 luôn lớn hơn 0 ( trái với 1)
TH2 : x5 là số dương \(\Rightarrow\) x8+ x2 - x5 +1=x8+ x2 - x5 +1 mà x8+x2+1 luôn lớn hơn x5 nên x8+ x2 - x5 +1 luôn lớn hơn 0 ( trái với 1)
\(\Rightarrow\) không tồn tại giá trị n nào của x để x8+ x2 - x5 +1= 0 , như vậy điều giả sử là sai. Vậy đa thức
x8+ x2 -x5 +1 vô nghiệm
\(x^8-x^5+x^2+1=\left(x^4\right)^2-2.\frac{1}{2}.x^4.x+\left(\frac{1}{2}x\right)^2+\frac{3}{4}x^2+1=\left(x^4-\frac{1}{2}x\right)^2+\frac{3}{4}x^2+1>0\)
\(\Rightarrow\)vô nghiệm
chung minh da thuc: M(x)= x4+x+11/2.x2 +6 vo nghiem
chung minh da thuc: M(x)= x4+x+11/2.x2 +6 vo nghiem
x^4>hoặc=0
nên x^4+x>hoặc=0
=>x^4+x+11/2.x^2+6>hoặc=0
=>đa thức M(x) vô nghiệm
Chung minh da thuc X2 - 10X+26 vo nghiem
Ta có:
x2-10x+26 = (x2-10x+25)+1=(x-5)2+1\(\ge\)1 với mọi x
=> Đa thức x2-10x+26 vô nghiệm với mọi x
Ta có: x2 -10x + 26 = x2 -5x -5x +25 +1 = x(x-5)-5(x-5) +1 = (x-5)2 +1
Mà \(\left(x-5\right)^2\ge0\)nên \(\left(x-5\right)^2+1\ge1\)
\(\Rightarrow\left(x-5\right)^2+1\ne0\)
Vậy đa thức trên không có nghiệm
chung minh da thuc vo nghiem
2x^2+2x+1
Ta có: \(2x^2+2x+1=0\)
\(\Rightarrow\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\left(\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\) [ theo công thức (a+b)\(^2\)=a\(^2\)+2ab+b\(^2\)]
\(\Rightarrow\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)(vô lý)
\(\Rightarrow2x^2+2x+1\)vô nghiệm (đpcm).
cho da thuc P(x)=\(x^3-ax^2-2x+2a\)
Xac dinh cac gia tri cua a de da thuc P(x) co 3 nghiem phan biet sao cho co 1 nghiem la trung binh cong cua 2 nghiem con lai
\(x^3-ax^2-2x+2a=0\Leftrightarrow x^2\left(x-a\right)-2\left(x-a\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x-a\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\\x=a\end{matrix}\right.\)
Để pt có 3 nghiệm pb \(\Leftrightarrow a\ne\pm\sqrt{2}\)
TH1: \(a=\frac{\sqrt{2}-\sqrt{2}}{2}\Rightarrow a=0\)
TH2: \(\sqrt{2}=\frac{a-\sqrt{2}}{2}\Rightarrow a=3\sqrt{2}\)
TH3: \(-\sqrt{2}=\frac{a+\sqrt{2}}{2}\Rightarrow a=-3\sqrt{2}\)
Vậy \(a=\left\{0;\pm3\sqrt{2}\right\}\)
cho hai da thuc sau:
f(x) = ( x-1) ( x+2) g(x) = x3 + ax2 +bx +2 A) tim nghiem cua f(x) B) xac dinh a va b biet nghiem cua da thuc f(x) cung la nghiem cua da thuc g(x)
cho cac da thuc f(x)=ax+b va g(x)=bx+a trong do a;b khac 0 biet rang nghiem cua da thuc f(x) la so duong cmr nghiem cua da thuc g(x) cung la 1 so duong
Cho da thuc P(x)=2(x-3)2 +5
Chung minh rang da thuc da thuc da cho khong co nghiem
Ta cần tìm x sao cho: \(P\left(x\right)=2\left(x-3\right)^2+5=0\)
Ta có: \(P\left(x\right)=2\left(x-3\right)^2+5\ge5>0\forall x\)
Vậy đa thức vô nghiệm.(đpcm)