cho tam giác abc cân tại a điểm d nằm trong tam giác sao cho bad=cad
a, CM rằng tam giác abd = tam giác acd
b,so sánh góc dbc và góc dcb
cho tam giác abc cân tại a điểm d nằm trong tam giác sao cho bad=cad
a, CM rằng tam giác abd = tam giác acd
b,so sánh góc dbc và góc dcb
Đây nha:
a. Xét tam giác ABD và tam giác ACD có:
góc BAD = góc BAC (gt)
AD chung
AB = AC (tam giác ABC cân)
=> tam giác ABD = tam giác ACD (cgc)
b. Gọi E là trung điểm của BC
Có: góc BAC = góc BAD + góc CAD mà góc BAD = góc CAD
=> AD là đường phân giác
Lại có: tam giác ABC cân tại A => AD đồng thời là đường trung trực của tam giác ABC
Do đó: DE là đường trung trực cũng là đường phân giác của tam giác BDC.
=> DE vuông với BC tại E; góc BDE = góc CDE
Xét tam giác BDE và tam giác CDE vuông tại E có:
DE chung
góc BDE = góc CDE (cmt)
=> tam giác BDE = tam giác CDE (ch-cgv)
=> góc DBC = góc DCB (2 góc tương ứng)
Cho tam giác ABC cân tại A. Điểm D nằm trong tam giác sao cho BAD^ = CAD^ A) chứng minh tam giác ABC = tam giác ACD B) so sánh DBC^ và DCB^
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó; ΔABD=ΔACD
b: Xét ΔDBC có DB=DC
nên ΔDBC cân tại D
hay \(\widehat{DBC}=\widehat{DCB}\)
Sửa đề chứng minh tam giác ABC = tam giác ACD => △ABD = △ACD
Xét △ABD và △ACD có
AB = AC
AD là cạnh chung
\(\widehat{BAD}=\widehat{CAD}\)
nên △ABD = △ACD (c-g-c)
b)
Ta có:
\(\text{△ABD = △ACD }\)
\(\text{=> DB = DC}\)
\(\text{=> △DBC cân tại D}\)
\(=>\)\(\widehat{DBC}=\widehat{DCB}\)
Tam giác ABC cân tại A,D nằm trong tam giác sao cho BAD^ = CAD^ a) CM: tam giác ABC= tam giác ABC B) so sánh DBC^ và DCB
tam giác ABC = tam giác ABC:)) đề lạ nhỉ:v
cho tam giác abc cân tại a. d là điểm nằm trong tam giác sao cho ad là tia phân giác của góc a chứng minh a tam giác abd bằng tam giác acd b góc dbc bằng góc dcb
1 .cho tam giác ABC cân tại a có góc A=80 độ. gọi D là một điểm nằm trong tam giác ABC sao cho góc DBC=10 độ DCB=30 độ. tính so do goc BAD
cho tam giác ABC cân tại A có A 80 độ. Gọi D là điểm nằm trong tam giác sao cho góc DBC 10 độ, góc DCB 30 độ. Tính góc BAD
cho tam giác abc cân tại a có góc a=80 độ gọi d là điểm nằm trong tam giác sao cho góc dbc=10 độ góc dcb=30 độ tính góc bad
Trên nửa mặt phẳng bờ là đường thẳng BC có chứa điểm A vẽ tam giác đều BEC
Tam giác ABC cân tại A suy ra AB=AC (T/c tam giác cân)
góc ABC=góc ACB=\(\frac{180^0-\widehat{BAC}}{2}=50^0\)
ta có góc CBA < góc CBE (vì 50 độ < 60 độ)
Tia BA nằm giữa hai tia BC và BE
do đó góc ABE = góc CBE-góc CBA= 600-500=100
Xét \(\Delta\)EBA và \(\Delta\)ECA
có EB=EC (vì \(\Delta\)EBC đều)
EA là cạnh chung
AB=AC (GT)
Do đó \(\Delta\)EBA=\(\Delta\)ECA (c.c.c)
suy ra gócBEA = góc CEA
MÀ góc BEC = 60 độ nên góc BEA = 600 : 2 = 300
Xét tam giác EBA và tam giác BDC
có góc BEA=góc DCB = 300
BE=BC(tam giác EBC đều)
góc ABE = góc DBC = 100
Do đó \(\Delta\)EBA=\(\Delta\)CBD (g.c.g)
suy ra BA=BD (hai cạnh tương ứng)
suy ra tam giác BAD cân tại B
Mà góc ABD=góc ABC-góc DBC=500-100=400
Do đó \(\widehat{BAD}=\frac{180^0-\widehat{ABD}}{2}=70^0\)
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn
cho tam giác ABC vuông tại A. gọi D là 1 điểm nằm trong tam giác ABC, sao cho góc DBC = góc DCA =30 độ . chứng minh rằng tam giác ACD cân , tính các góc của tam giác ACD
Đề bài thiếu, nếu ABC là tam giác vuông bất kì thì không thể chứng minh ACD là tam giác cân được. ABC phải là tam giác vuông cân.
Câu hỏi này đã có trả lời ở đây: https://olm.vn/hoi-dap/detail/185970928943.html
Câu hỏi của linh ngoc - Toán lớp 7 - Học toán với OnlineMath
Tam giác ABC vuông cân tại A
Trên cùng nửa mặt phẳng bờ AC chứa B vẽ tam giác đều ACE.
Ta có: \(\widehat{ACE}=60^o\)
=> \(\widehat{BCE}=\widehat{ACE}-\widehat{ACE}=60^o-45^o=15^o\)
và \(\widehat{BCD}=\widehat{BCA}-\widehat{DCA}=45^o-30^o=15^o\)
Suy ra \(\widehat{BCE}=\widehat{BCD}\)(1)
Mặt khác Ta có tam giác ABC vuông cân tại A => AB=AC
Tam giác ACE đều => AE=AC
=> AB=AE => Tam giác BAE cân tại A
mà \(\widehat{BAE}=\widehat{BAC}-\widehat{EAC}=90^o-60^o=30^o\)
=> \(\widehat{ABE}=\widehat{AEB}=\frac{180^o-\widehat{BAE}}{2}=75^o\)
=> \(\widehat{CBE}=\widehat{ABE}-\widehat{ABC}=75^o-45^o=30^o\)
=> \(\widehat{CBE}=\widehat{CBD}\left(=30^o\right)\)(2)
Xét tam giác DBC và tam giác EBC có
\(\widehat{BCE}=\widehat{BCD}\)(1),
\(\widehat{CBE}=\widehat{CBD}\left(=30^o\right)\)theo (2)
và BC chung
=> tam giác DBC=EBC
=> DC=EC=AC
=> Tam giác ADC cân tại C
\(\widehat{ACD}=30^o\Rightarrow\widehat{DAC}=\widehat{ADC}=\frac{180^o-\widehat{ACD}}{2}=75^o\)
cho tam giác ABC vuông cân tại A. Gọi D là một điểm nằm trong tam giác sao cho góc DBC= góc DCA=30 độ. Chứng minh rằng tam giác ACD là tam giác cân. Tính góc tam giác cân đó.
đố ai giải được bài toán khó lớp 7 này đấy (em trong đội tuyển hsg toán nè!)