Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dương minh quân
Xem chi tiết
Kudo Shinichi
28 tháng 4 2017 lúc 20:55

Gọi d là UCLN ( 7n+4 và 5n + 3 )

Vậy \(5n+3⋮d\)và \(7n+4⋮d\)

\(\Rightarrow7\left(5n+3\right)⋮d\)và \(5\left(7n+4\right)⋮d\)

\(\Leftrightarrow35n+21⋮d\)và \(35n+20⋮d\)

\(\Rightarrow35n+21-\left(35n+20\right)⋮d\)

Hay \(1⋮d\)\(\Rightarrow d=1\)hoặc \(-1\)

Vì UCLN(5n+3 va 7n + 4 ) nên \(\frac{7n+4}{5n+3}\)tối giản với mọi n 

k mink nha

Lú Toán, Mù Anh
Xem chi tiết
kisibongdem
24 tháng 2 2022 lúc 19:36

\(\text{Để }\) \(\dfrac{7n + 4 }{ 5n + 3 } \) \(\text{ tối giản }\)

\(\Rightarrow ƯC( 7n + 4 ; 5n + 3 ) = 1 \)

\(\text{ Gọi }\) \(ƯC( 7n + 4 ; 5n + 3 ) = d\)

\(\text{ Theo đề bài ta có :}\)

\(\begin{cases} 7n + 4 \vdots d \\5n + 3 \vdots d \end{cases}\)

\(\Rightarrow \begin{cases} 5( 7n + 4 ) \vdots d\\ 7( 5n + 3) \vdots d\end{cases}\)

\(\Rightarrow 7( 5n + 3 ) - 5( 7n + 4 ) \vdots d\)

\(\Rightarrow 35n + 21 - 35n - 20 \vdots d\)

\(\Rightarrow 1 \vdots d\)

\(\Rightarrow d = 1\)

\(\text{ Từ đó suy ra }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)

\(\text{ Vậy }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)

\(#kisibongdem\)

Phạm Đức Anh
Xem chi tiết

Gọi d là ƯCLN(7n+4,5n+3)

\(\Rightarrow\)7n+4 \(⋮\)d và 5n+3 \(⋮\) d

\(\Rightarrow\)5(7n+4)-7(5n+3) \(⋮\) d

\(\Rightarrow\)35n+20-35n-21 \(⋮\) d

\(\Rightarrow\)-1 chia hết cho d hay d = -1

\(\Rightarrow\)\(\dfrac{7n+4}{5n+3}\)là phân số tối giản vì có ƯCLN là -1

nguyenvankhoa
Xem chi tiết
robert lewandoski
7 tháng 5 2015 lúc 16:32

Gọi d là ƯCLN(7n+4,5n+3)

=>7n+4 chia hết cho d và 5n+3 chia hết cho d

=>5(7n+4)-7(5n+3) chia hết cho d

=>35n+20-35n-21 chia hết cho d

=>-1 chia hết cho d hay d=-1

Vậy 7n+4/5n+3 là pstg( vì có ƯCLN=-1)

Làm ơn cho mình 1 đ ú n g  với,chắc chắn mình đúng......................

❤Trang_Trang❤💋
10 tháng 2 2018 lúc 19:48

Gọi d = ƯCLN ( 7n + 4 ; 5n + 3 )

Ta cso :

7n + 4 chia hết cho d

5n + 3 chia hết cho d

=> 5 ( 7n + 4 ) chia hết cho d

      7 ( 5n + 3 ) chia hết cho d

=>  35 n + 20 chia hết cho d

      35n + 21 chia hết cho d

=> ( 35n + 21 ) - ( 35n + 20 ) chia hết cho d

=> 1 chia hết cho d

Vậy \(\frac{7n+4}{5n+3}\)là phân số tối giản

Wall HaiAnh
11 tháng 2 2018 lúc 19:05

Gọi d là ƯCLN (7n+4, 5n+3)

\(\Rightarrow\hept{\begin{cases}7n+4⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+4\right)⋮d\\7\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+20⋮d\\35n+21⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{7n+4}{5n+3}\)là phân số tối giản

Lê Anh  Quân
Xem chi tiết

A = \(\dfrac{7n+4}{5n+3}\) ( n # -3/5)

Gọi ước chung lớn nhất của 7n + 4 và 5n + 3 là d

Ta có : \(\left\{{}\begin{matrix}7n+4⋮d\\5n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}5.\left(7n+4\right)⋮d\\7.\left(5n+3\right)⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}35n+20⋮d\\35n+21⋮d\end{matrix}\right.\)

Trừ vế với vế ta có: 35n + 21 - ( 35n + 20) ⋮ d

                          ⇒ 35n + 21 - 35 n - 20 ⋮ d

                                                              1 ⋮ d

            ⇒ d = 1

Vậy ước chung lớn nhất của 7n + 4 và 5n + 3 là 1 

Hay phân số: \(\dfrac{7n+4}{5n+3}\) là phân số tối giản ( đpcm)

võ thị hồng thư
Xem chi tiết
Phạn Nhạt Min
9 tháng 4 2016 lúc 16:08

chung minh UCLN tu so va mau so la 1

Nguyễn Nhật Hạ
9 tháng 4 2016 lúc 16:11

Đặt d là ƯCLN (7n+4; 5n+3)

Ta có :{7n+4/5n+3 (=) {35n+20/35n+21

(=) (35n+21) - (35n+20) = 1 chia hết cho d

vậy phân số 7n+4/5n+3 là phân số tối giản

Pokemon XYZ
9 tháng 4 2016 lúc 16:19

Đặt d là ƯCLN (7n+4; 5n+3)

Ta có :{7n+4/5n+3 (=) {35n+20/35n+21

(=) (35n+21) - (35n+20) = 1 chia hết cho d

vậy phân số 7n+4/5n+3 là phân số tối giản

Nguyễn Phương Anh
Xem chi tiết
Nguyễn An Ninh
22 tháng 4 2023 lúc 17:37

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

pham ha my
Xem chi tiết
Hoàng Phú Huy
17 tháng 3 2018 lúc 19:28

dựa vào tìm ước chung lớn nhất

dễ mà

cậu lm đc

Nguyễn Phương Uyên
17 tháng 3 2018 lúc 19:29

gọi d là ƯC(7n+4; 5n+3)

\(\Rightarrow\hept{\begin{cases}7n+4⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+4\right)⋮d\\7\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+20⋮d\\35n+21⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)

\(\Rightarrow35n+21-35n-20⋮d\)

\(\Rightarrow\left(35n-35n\right)+\left(21-20\right)⋮d\)

\(\Rightarrow0+1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

\(\Rightarrow\frac{7n+4}{5n+3}\) là phân số tối giản với mọi n 

Cuber Việt
Xem chi tiết
An Trịnh Hữu
8 tháng 7 2017 lúc 22:42

Giả sử ước chung của 7n+4 và 9n+5 là d; ta có:

-\(\left(7n+4\right)⋮d=>9\left(7n+4\right)=\left(63n+36\right)⋮d\)

- \(\left(9n+5\right)⋮d=>7\left(9n+5\right)=\left(63n+35\right)⋮d\)

Do cả hai số đều chia hết cho d nên hiệu cũng chia hết cho d;

=> (63n + 36) - ( 63n + 35) \(⋮\)d=> \(1⋮d=>d=\pm1\)

Vậy phân số trên luôn tối giản;

CHÚC BẠN HỌC TỐT...

 Mashiro Shiina
8 tháng 7 2017 lúc 22:58

Gọi \(d\)\(UCLN\left(7n+4;9n+5\right)\)

\(\Rightarrow7n+4⋮d\Rightarrow9\left(7n+4\right)⋮d\Rightarrow63n+36⋮d\)

\(\Rightarrow9n+5⋮d\Rightarrow7\left(9n+5\right)⋮d\Rightarrow63n+35⋮d\)

\(\Rightarrow\left(63n+36\right)-\left(63n+35\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\dfrac{7n+4}{9n+5}\) tối giản với mọi \(n\in N\)

Nguyễn Tử Đằng
9 tháng 7 2017 lúc 8:37

Gọi d là ước chung của 7n +4 và 9n+5 , ta có :

=>( 7n+4) \(⋮\) d => 9.(7n+4)=>(63n+36 ) \(⋮\) d

=>( 9n +5) \(⋮\) d =>7.(9n +5) =>(63n+35) \(⋮\) d

Vì cả hai số trên đều chia hết cho d nên hiệu của chúng cũng chia hết cho d

=> (63n+36) - ( 63n +35 ) \(⋮\)d

=> 1 \(⋮\)d => d = + 1 và -1

Vậy phân số trên luôn tối giản