chứng tỏ rằng :\(\dfrac{7n+4}{5n+3}\) tối giản với mọi n
Chứng tỏ rằng 7n+4 phần 5n +3 là phân số tối giản với mọi n
Gọi d là UCLN ( 7n+4 và 5n + 3 )
Vậy \(5n+3⋮d\)và \(7n+4⋮d\)
\(\Rightarrow7\left(5n+3\right)⋮d\)và \(5\left(7n+4\right)⋮d\)
\(\Leftrightarrow35n+21⋮d\)và \(35n+20⋮d\)
\(\Rightarrow35n+21-\left(35n+20\right)⋮d\)
Hay \(1⋮d\)\(\Rightarrow d=1\)hoặc \(-1\)
Vì UCLN(5n+3 va 7n + 4 ) nên \(\frac{7n+4}{5n+3}\)tối giản với mọi n
k mink nha
Chứng minh rằng : Với mọi n thì phân số \(\dfrac{7n+4}{5n+3}\) là phân số tối giản
\(\text{Để }\) \(\dfrac{7n + 4 }{ 5n + 3 } \) \(\text{ tối giản }\)
\(\Rightarrow ƯC( 7n + 4 ; 5n + 3 ) = 1 \)
\(\text{ Gọi }\) \(ƯC( 7n + 4 ; 5n + 3 ) = d\)
\(\text{ Theo đề bài ta có :}\)
\(\begin{cases} 7n + 4 \vdots d \\5n + 3 \vdots d \end{cases}\)
\(\Rightarrow \begin{cases} 5( 7n + 4 ) \vdots d\\ 7( 5n + 3) \vdots d\end{cases}\)
\(\Rightarrow 7( 5n + 3 ) - 5( 7n + 4 ) \vdots d\)
\(\Rightarrow 35n + 21 - 35n - 20 \vdots d\)
\(\Rightarrow 1 \vdots d\)
\(\Rightarrow d = 1\)
\(\text{ Từ đó suy ra }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)
\(\text{ Vậy }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)
\(#kisibongdem\)
. Chứng minh rằng: Với mọi n thì phân số 7n+4/5n+3 là phân số tối giản
Gọi d là ƯCLN(7n+4,5n+3)
\(\Rightarrow\)7n+4 \(⋮\)d và 5n+3 \(⋮\) d
\(\Rightarrow\)5(7n+4)-7(5n+3) \(⋮\) d
\(\Rightarrow\)35n+20-35n-21 \(⋮\) d
\(\Rightarrow\)-1 chia hết cho d hay d = -1
\(\Rightarrow\)\(\dfrac{7n+4}{5n+3}\)là phân số tối giản vì có ƯCLN là -1
Chứng minh rằng : Với mọi n thì phân số 7n+4/5n+3 là phân số tối giản
Gọi d là ƯCLN(7n+4,5n+3)
=>7n+4 chia hết cho d và 5n+3 chia hết cho d
=>5(7n+4)-7(5n+3) chia hết cho d
=>35n+20-35n-21 chia hết cho d
=>-1 chia hết cho d hay d=-1
Vậy 7n+4/5n+3 là pstg( vì có ƯCLN=-1)
Làm ơn cho mình 1 đ ú n g với,chắc chắn mình đúng......................
Gọi d = ƯCLN ( 7n + 4 ; 5n + 3 )
Ta cso :
7n + 4 chia hết cho d
5n + 3 chia hết cho d
=> 5 ( 7n + 4 ) chia hết cho d
7 ( 5n + 3 ) chia hết cho d
=> 35 n + 20 chia hết cho d
35n + 21 chia hết cho d
=> ( 35n + 21 ) - ( 35n + 20 ) chia hết cho d
=> 1 chia hết cho d
Vậy \(\frac{7n+4}{5n+3}\)là phân số tối giản
Gọi d là ƯCLN (7n+4, 5n+3)
\(\Rightarrow\hept{\begin{cases}7n+4⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+4\right)⋮d\\7\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+20⋮d\\35n+21⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{7n+4}{5n+3}\)là phân số tối giản
Chứng minh rằng:Với mọi n thì phân số \(\dfrac{7n+4}{5n+3}\) là phân số tối giản
A = \(\dfrac{7n+4}{5n+3}\) ( n # -3/5)
Gọi ước chung lớn nhất của 7n + 4 và 5n + 3 là d
Ta có : \(\left\{{}\begin{matrix}7n+4⋮d\\5n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}5.\left(7n+4\right)⋮d\\7.\left(5n+3\right)⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}35n+20⋮d\\35n+21⋮d\end{matrix}\right.\)
Trừ vế với vế ta có: 35n + 21 - ( 35n + 20) ⋮ d
⇒ 35n + 21 - 35 n - 20 ⋮ d
1 ⋮ d
⇒ d = 1
Vậy ước chung lớn nhất của 7n + 4 và 5n + 3 là 1
Hay phân số: \(\dfrac{7n+4}{5n+3}\) là phân số tối giản ( đpcm)
chứng minh rằng: với mọi n thì phân số 7n+4/5n+3 là phân số tối giản
Đặt d là ƯCLN (7n+4; 5n+3)
Ta có :{7n+4/5n+3 (=) {35n+20/35n+21
(=) (35n+21) - (35n+20) = 1 chia hết cho d
vậy phân số 7n+4/5n+3 là phân số tối giản
Đặt d là ƯCLN (7n+4; 5n+3)
Ta có :{7n+4/5n+3 (=) {35n+20/35n+21
(=) (35n+21) - (35n+20) = 1 chia hết cho d
vậy phân số 7n+4/5n+3 là phân số tối giản
Chứng tỏ rằng với mọi số nguyên n, các phân số sau là phân số tối giản:
a) \(\dfrac{5n+3}{3n+2}\)
b) \(\dfrac{15n+1}{30n+1}\)
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
chứng minh rằng: với mọi n thì phân sôs\(\frac{7n+4}{5n+3}\)là phân số tối giản
dựa vào tìm ước chung lớn nhất
dễ mà
cậu lm đc
gọi d là ƯC(7n+4; 5n+3)
\(\Rightarrow\hept{\begin{cases}7n+4⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+4\right)⋮d\\7\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+20⋮d\\35n+21⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)
\(\Rightarrow35n+21-35n-20⋮d\)
\(\Rightarrow\left(35n-35n\right)+\left(21-20\right)⋮d\)
\(\Rightarrow0+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
\(\Rightarrow\frac{7n+4}{5n+3}\) là phân số tối giản với mọi n
Với mọi số tự nhiên n chứng tỏ rằng phân số sau tối giản :
C = \(\dfrac{7n+4}{9n+5}\)
Giả sử ước chung của 7n+4 và 9n+5 là d; ta có:
-\(\left(7n+4\right)⋮d=>9\left(7n+4\right)=\left(63n+36\right)⋮d\)
- \(\left(9n+5\right)⋮d=>7\left(9n+5\right)=\left(63n+35\right)⋮d\)
Do cả hai số đều chia hết cho d nên hiệu cũng chia hết cho d;
=> (63n + 36) - ( 63n + 35) \(⋮\)d=> \(1⋮d=>d=\pm1\)
Vậy phân số trên luôn tối giản;
CHÚC BẠN HỌC TỐT...
Gọi \(d\) là \(UCLN\left(7n+4;9n+5\right)\)
\(\Rightarrow7n+4⋮d\Rightarrow9\left(7n+4\right)⋮d\Rightarrow63n+36⋮d\)
\(\Rightarrow9n+5⋮d\Rightarrow7\left(9n+5\right)⋮d\Rightarrow63n+35⋮d\)
\(\Rightarrow\left(63n+36\right)-\left(63n+35\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\dfrac{7n+4}{9n+5}\) tối giản với mọi \(n\in N\)
Gọi d là ước chung của 7n +4 và 9n+5 , ta có :
=>( 7n+4) \(⋮\) d => 9.(7n+4)=>(63n+36 ) \(⋮\) d
=>( 9n +5) \(⋮\) d =>7.(9n +5) =>(63n+35) \(⋮\) d
Vì cả hai số trên đều chia hết cho d nên hiệu của chúng cũng chia hết cho d
=> (63n+36) - ( 63n +35 ) \(⋮\)d
=> 1 \(⋮\)d => d = + 1 và -1
Vậy phân số trên luôn tối giản