Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nguyễn Bảo Quyên
Xem chi tiết
Thúy Hà
Xem chi tiết
nguyen thi bao tien
Xem chi tiết
Nguyễn Hưng Phát
21 tháng 7 2018 lúc 16:30

\(8\left(x-2010\right)^2\ge0\Rightarrow36-y^2\ge0\)

\(\Rightarrow36\ge y^2\)\(\Rightarrow y^2\in\left\{0,1,4,9,16,25,36\right\}\)

 Xét \(y^2=0\Rightarrow8\left(x-2010\right)^2=36\Rightarrow\left(x-2010\right)^2=\frac{36}{8}=\frac{9}{2}\)(loại)

Xét \(y^2=1\Rightarrow8\left(x-2010\right)^2=36-1=35\Rightarrow\left(x-2010\right)^2=\frac{35}{8}\)(loại)

Bạn xét tiếp nha :))

Edogawa Conan
19 tháng 6 2019 lúc 21:37

Ta có: (x - 2010)2 \(\ge\)\(\forall\) x <=> 8(x - 2010)2 \(\ge\)\(\forall\)x

<=>36 - y2 \(\ge\)0

<=> 36 \(\ge\)y2

<=> y2 \(\le\)36

<=> |y| \(\le\)6

Do y \(\in\)N  => 0 \(\le\)y < 6

+) Với y = 0 => 36 - 02 = 8(x - 2010)2

=> 36 = 8(x - 2010)2

=> (x - 2010)2 = 36 : 8 (ko thõa mãn)

+) Với y = 1 => 36 - 12 = 8(x - 2010)2

=> 35 = 8(x - 2010)2

=> (x - 2010)2 = 35 : 8 (ko thõa mãn)

+) Với y = 2 => 36 - 22 = 8(x - 2010)2

=> 32 = 8(x - 2010)2

=> (x - 2010)2 = 32 : 8

=> (x - 2010)2 = 4 = 22

=> \(\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}}\)

=> \(\orbr{\begin{cases}x=2012\\x=2008\end{cases}}\)

+) Với y = 3 => 36 - 32 = 8(x - 2010)2

=> (x - 2010)2 = 27 : 8 (ko thõa mãn)

+) Với y = 4 => 36 - 42 = 8(x - 2010)2

=> (x - 2010)2 = 20 : 8 (ko thõa mãn)

+) Với y = 5 => 36 - 52 = 8(x - 2010)2

=> (x - 2010)2 = 11 : 8 (ko thõa mãn)

Vậy ...

Trần Ngọc An Như
Xem chi tiết
Mai Phương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 12 2021 lúc 22:12

\(23-y^2=7\left(x-2004\right)^2\ge0\\ \Leftrightarrow y^2\le23\)

Mà \(y\in N\Leftrightarrow y\in\left\{0;1;2;3;4\right\}\)

Với \(y=0\Leftrightarrow7\left(x-2004\right)^2=23\left(loại\right)\)

Với \(y=1\Leftrightarrow7\left(x-2004\right)^2=22\Leftrightarrow\left(x-2004\right)^2=\dfrac{22}{7}\left(loại\right)\)

Với \(y=2\Leftrightarrow7\left(x-2004\right)^2=19\Leftrightarrow\left(x-2004\right)^2=\dfrac{19}{7}\left(loại\right)\)

Với \(y=3\Leftrightarrow7\left(x-2004\right)^2=14\Leftrightarrow\left(x-2004\right)^2=2\left(loại\right)\)

Với \(y=4\Leftrightarrow7\left(x-2004\right)^2=7\Leftrightarrow\left[{}\begin{matrix}x-2004=1\\x-2004=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2005\\x=2003\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2005;4\right);\left(2003;4\right)\)

Phạm Thị Minh Tâm
Xem chi tiết
Quyên nguyễn
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2022 lúc 10:14

a.

- Với \(y=1\) vế trái hữu tỉ, vế phải vô tỉ (ktm)

- Với \(y\ge4\Rightarrow y!=8k\Rightarrow\left(\sqrt{3}\right)^y=\left(\sqrt{3}\right)^{8k}=81^k\equiv1\left(mod10\right)\)

Mà \(6^x\equiv6\left(mod10\right)\) ; \(11^x\equiv1\left(mod10\right)\Rightarrow10+11^x+6^x\equiv7\left(mod10\right)\)

\(\Rightarrow\) Pt vô nghiệm

- Với \(y=2\Rightarrow\left(\sqrt{3}\right)^y=3\equiv3\left(mod10\right)\) (vô nghiệm do \(VT\equiv7\left(mod10\right)\) theo cmt)

- Với \(y=3\Rightarrow10+11^x+6^x=27\) 

\(\Rightarrow11^x+6^x=17\Rightarrow x=1\)

Vậy \(\left(x;y\right)=\left(1;3\right)\)

Nguyễn Việt Lâm
4 tháng 3 2022 lúc 10:22

b.

Với \(x\ge4\Rightarrow x!=8k\Rightarrow2^{x!}=2^{8k}=256^k\equiv6\left(mod10\right)\)

Và \(6^y\equiv6\left(mod10\right)\Rightarrow2^{x!}+6^y\equiv12\left(mod10\right)\Rightarrow\) vế trái ko chia hết cho 10 trong khi VP chia hết cho 10 (loại)

Với \(x=1\Rightarrow2+6^y\equiv8\left(mod10\right)\Rightarrow\)  vô nghiệm

Với \(x=2\Rightarrow4+6^y=10^y\Rightarrow y=1\)

Với \(x=3\Rightarrow64+6^y=10^y\Rightarrow y=2\)

Vậy \(\left(x;y\right)=\left(2;1\right);\left(3;2\right)\)

I am➻Minh
Xem chi tiết
I am➻Minh
16 tháng 1 2019 lúc 20:11

help me

zZz Cool Kid_new zZz
19 tháng 2 2019 lúc 11:42

Ta có:\(7\left(x-2004\right)^2=23-y^2\)

\(\Rightarrow y^2+7\left(x-2004\right)^2=23\)

Do \(y^2\ge0\Rightarrow7\left(x-2004\right)^2\le23\)

\(\Rightarrow\left(x-2004\right)^2\le\frac{23}{7}\)

\(\Rightarrow\orbr{\begin{cases}\left(x-2004\right)^2=1\\\left(x-2004\right)^2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2005\\x=2004\end{cases}}\)

Với \(x=2005\Rightarrow23-7=y^2\)

\(\Rightarrow y^2=16\Rightarrow y=4\left(L\right)\) vì y là số nguyên tố.

Với \(x=2004\Rightarrow y^2=23\left(L\right)\)

Vậy không có số nguyên tố x;y thỏa mãn đề bài.