tìm x
(7x-3)2011=(3-7x)2010
(3x-1)2=(3x-1)
Giải phương trình sau
a) (x-2012)/1 + (x-2011)/2 + (x-2010)/3 +...+ (x-1)/2012 + x/2013
b) 1/(x^2+3x+2) + 1/(x^2+5x+6) + 1/(x^2+7x+12) + 1/(x^2+9x+20) = 1/8
Tìm x thỏa mãn: \(\sqrt[3]{3x^2-x+2011}-\sqrt[3]{3x^2-7x+2012}-\sqrt[3]{6x-2013}=\sqrt[3]{2012}\)
giải các phương trình
a) (3x-2)(3x-1) = (3x+1)2
b) (4x-1)(x+1) = (2x-3)2
c) (5x+1)2 = (7x-3)(7x+2)
d) (4-3x)(4+3x)=(9x-3)(1-x)
e) x(x+1)(x+2)(x+3)=24
g) (7x - 2)2= (7x-3)(7x+2)
a) \(\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)
<=> \(9x^2-9x+2=9x^2+6x+1\)
<=> \(15x=1\) <=> \(x=\frac{1}{15}\)
b) \(\left(4x-1\right)\left(x+1\right)=\left(2x-3\right)^2\)
<=> \(4x^2+3x-1=4x^2-12x+9\)
<=> \(15x^2=10\) <=> \(x=\frac{2}{3}\)
c) \(\left(5x+1\right)^2=\left(7x-3\right)\left(7x+2\right)\) <=> \(25x^2+10x+1=49x^2-7x-6\)
<=> \(24x^2-17x-7=0\) <=> \(24x^2-24x+7x-7=0\)
<=> \(\left(24x+7\right)\left(x-1\right)=0\) <=> \(\orbr{\begin{cases}x=-\frac{7}{24}\\x=1\end{cases}}\)
d) (4 - 3x)(4 + 3x) = (9x - 3)(1 - x)
<=> 16 - 9x2 = 12x - 9x2 - 3
<=> 12x = 19
<=> x = 19/12
e) x(x + 1)(x + 2)(x + 3) = 24
<=> (x2 + 3x)(x2 + 3x + 2) = 24
<=> (x2 + 3x)2 + 2(x2 + 3x) - 24 = 0
<=> (x2 + 3x)2 + 6(x2 + 3x) - 4(x2 + 3x) - 24 = 0
<=> (x2 + 3x + 6)(x2 + 3x - 4) = 0
<=> \(\orbr{\begin{cases}x^2+3x+6=0\\x^2+3x-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\left(vn\right)\\\left(x+4\right)\left(x-1\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
g) (7x - 2)2 = (7x - 3)(7x + 2)
<=> 49x2 - 28x + 4 = 49x2 - 7x - 6
<=> 21x = 10 <=> x = 10/21
Bài 1: Tìm x, biết
a) 3/7x - 2/3x =10/21
b) 7/35 : ( x- 1/3)=2/25
c) | 2x-4 |+1=5
d) 3.| 3 - 2x | - 1=2/5
e) 3.(x-1/2)-5(x+3/5)=-x+1/5
f) (2x-1).(x+2/3)=0
g) x+4/2008+x+3/2009=x+2/2010+x+1/2011
a, \((\frac{3}{7}-\frac{2}{3})\) .x =\(\frac{10}{21}\)
\(\frac{-5}{21}\).x=\(\frac{10}{21}\)
x= -2
Mk chỉ làm 1 phần các phằn còn lại tương tự
Bài rút gọn biểu thức
a) M=|2x-3|+|x-1| với x > 1,5
b) N=|2-x|-3|x+1| với x < -1
c) P=|3x-5|+|x-2|
d) Q=|x-3|-2.|-5x|
a, \(\frac{3}{7}x-\frac{2}{3}x=\frac{10}{21}\Rightarrow\left(\frac{3}{7}-\frac{2}{3}\right)x=\frac{10}{21}\Rightarrow x=\frac{10}{21}.\left(\frac{-21}{5}\right)\Rightarrow x=-2\)
b, \(\frac{7}{35}:\left(x-\frac{1}{3}\right)=\frac{2}{25}\Rightarrow x-\frac{1}{3}=\frac{1}{5}:\frac{2}{25}\Rightarrow x=\frac{1}{10}-\frac{1}{3}=\frac{13}{30}\)
c, \(|2x-4|+1=5\)
\(\Rightarrow\orbr{\begin{cases}2x-4=4\\2x-4=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
d, \(3.|3-2x|-1=\frac{2}{5}\)
\(\Rightarrow3.|3-2x|=\frac{7}{5}\)
\(\Rightarrow\orbr{\begin{cases}3-2x=\frac{7}{15}\\3-2x=-\frac{7}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{19}{15}\\x=\frac{26}{15}\end{cases}}\)
f, \(\left(2x-1\right).\left(x+\frac{2}{3}\right)=0\)
\(\Rightarrow\hept{\begin{cases}2x-1=0\\x+\frac{2}{3}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=-\frac{2}{3}\end{cases}}\)
giải các phương trình
a) (3x-2)(3x-1) = (3x+1)2
b) (4x-1)(x+1) = (2x-3)2
c) (5x+1)2 = (7x-3)(7x+2)
d) (4-3x)(4+3x)=(9x-3)(1-x)
e) x(x+1)(x+2)(x+3)=24
g) (7x - 2)2= (7x-3)(7x+2)
. Giải các phương trình sau:
a, \(\sqrt{10x^2+3x+1}\) = (6x+1)\(\sqrt{x^2+3}\)
b, (4x-1)\(\sqrt{x^3+1}\)= \(2x^3+x^2+1\)
c, \(\sqrt[3]{3x^2-x+2010}-\sqrt[3]{3x^2-6x+2011}-\sqrt[3]{5x-2012}=\sqrt[3]{2011}\)
d, \(\sqrt[3]{1+7x}+\sqrt[3]{2x-1}=2\sqrt[3]{x}\)
e, \(\sqrt[3]{x^4-x^2}+x^2=2x+1\)
(3x +1) √(x^3 −7x + 6) = −x^3 −3x^2 + 7x +1
\(pt\Leftrightarrow x^3+3x^2-7x-1+\left(3x+1\right)\sqrt{x^3-7x+6}=0\)
\(\Leftrightarrow\left(x^3+3x^2-7x-1+\left(3x+1\right)\sqrt{x^3-7x+6}\right)\left(x^3+3x^2-7x-1-\left(3x+1\right)\sqrt{x^3-7x+6}\right)=0\)
\(\Leftrightarrow\left(\left(x^3+3x^2-7x-1\right)^2-\left(3x+1\right)^2\left(x^3-7x+6\right)=0\right)\)
Sau đó em giải tiếp đc r ^^ Phá bình phương rồi đặt nhân tử chung.
tìm x
7x^3+3x^2-3x+1=0
\(\Rightarrow7x^3+7x^2-4x^2-4x+x+1=0\\ \Rightarrow\left(x+1\right)\left(7x^2-4x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\7x^2-4x+1=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Rightarrow7\left(x^2-2\cdot\dfrac{2}{7}x+\dfrac{4}{49}\right)+\dfrac{3}{7}=0\\ \Rightarrow7\left(x-\dfrac{2}{7}\right)^2+\dfrac{3}{7}=0\left(\text{vô lí}\right)\)
Vậy x=-1
bài 1: Giải phương trình a, ( 3x-2)(3x-1) = ( 3x+1)2 b, ( 4x-1)(x+1) = ( 2x-3)2 c, ( 5x+1)2 = (25x-1)(x+1) d, ( 7x-2)2 = ( 7x-3)(7x+2) e, ( 4-3x)(4+3x) = (9x-3)(1-x) g, x(x+1)(x+2)(x+3) = 24
a: \(\Leftrightarrow9x^2-9x+2=9x^2+6x+1\)
=>-3x=-1
hay x=1/3
b: \(\Leftrightarrow4x^2+4x-x-1=4x^2-12x+9\)
=>3x-1=-12x+9
=>15x=10
hay x=2/3
c: \(\Leftrightarrow25x^2+10x+1=25x^2+25x-x-1=24x-1\)
=>10x-24x=-1-1
=>-14x=-2
hay x=1/7
d: \(\Leftrightarrow49x^2-28x+4=49x^2+14x-21x-6\)
=>-28x+4=-7x-6
=>-21x=-10
hay x=10/21