tìm GTLN của A biết :
A = \(\frac{-13}{4\left(3-4x\right)^4+3-5}\)
Cho biểu thức \(A=\frac{3}{x+4}-\frac{x^2-x}{x+4}.\frac{2x-5}{\left(x-2\right)\left(x^2+4x\right)}-\frac{17}{\left(x+4\right)^2}\)
a) Tìm ĐKXĐ và rút gọn A
b) Tìm giá trị của x để 18A=1
c) Tìm GTLN của A
--> Bản gốc đây ạ ==
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\)
\(A=\frac{3}{x+4}-\frac{x\left(x-1\right)}{x+4}\times\frac{2x-5}{x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{3\left(x+4\right)}{\left(x+4\right)^2}-\frac{x\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{3x+12}{\left(x+4\right)^2}-\frac{\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{\left(3x+12\right)\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{2x^2-7x+5}{\left(x+4\right)^2\left(x-2\right)}-\frac{17\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}\)
\(=\frac{3x^2+6x-24-2x^2+7x-5-17x+34}{\left(x+4\right)^2\left(x-2\right)}\)
\(=\frac{x^2-4x+5}{\left(x+4\right)^2\left(x-2\right)}=\frac{x^2-4x+5}{x^3+6x^2-32}\)
b) \(18A=1\)
<=> \(18\times\frac{x^2-4x+5}{x^3+6x^2-32}=1\)( ĐK : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\))
<=> \(\frac{x^2-4x+5}{x^3+6x^2-32}=\frac{1}{18}\)
<=> 18( x2 - 4x + 5 ) = x3 + 6x2 - 32
<=> 18x2 - 72x + 90 = x3 + 6x2 - 32
<=> x3 + 6x2 - 32 - 18x2 + 72x - 90 = 0
<=> x3 - 12x2 + 72x - 122 = 0
Rồi đến đây chịu á :)
Ý lộn == là \(\frac{x^2-2x}{x+4}\)ạ ==
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
. Tìm GTLN của A biết A=\(\frac{3}{1+\left|3x+4\right|}\)
vì \(|3x+4|\ge0\forall x\in Q\)
\(\Rightarrow1+\)\(|3x+4|\ge1\)
dấu = xảy ra <=>
3x+4=0
3x=-4
x=\(\frac{-3}{4}\)
vậy GTLN của A lớn nhất tại x=-3/4
Vì 3>0
=>Để A đạt gtln
=>1+|3x+4| nhỏ nhất
Vì |3x+4|≥0
=>1+|3x+4|≥1
Dấu "=" xảy ra <=>3x+4=0
<=>3x=-4
<=>x=-4/3
=>Max A=3<=>x=-4/3
Để A = 3 / 1 + | 3x + 4 | đạt giá trị lớn nhất
\(\Leftrightarrow\)1 + | 3x + 4 | đạt giá trị nhỏ nhất
Ta có :
B = 1 + | 3x + 4 |
B = | 3x + 4 | + 1\(\ge\)1
Dấu " = " xảy ra \(\Leftrightarrow\)3x + 4 = 0
\(\Rightarrow\)x = - 4 / 3
Min B = 1 \(\Leftrightarrow\)x = - 4 / 3
Vậy : Max A = 3 / 1 = 3 \(\Leftrightarrow\)x = - 4 / 3
Tìm nghiệm của các đa thức:
a/ \(P\left(x\right)=2x^3+4x^2-5x-1\)
b/ \(Q\left(x\right)=\frac{2}{3}x^3+\frac{3}{4}x^2+\frac{4}{5}x-2\frac{13}{60}\)
c/ \(R\left(x\right)=4x^3+6x^2+9x+7\)
Tìm GTLN của C biết C=\(\frac{3\left|x\right|+2}{4\left|x\right|-5}\)
Cho M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\left(\frac{x^2+8x+16}{32}\right)\)
a) Tìm x để giá trị của biểu thức bằng 0
b) Tính M biết \(x=\frac{-3}{8}\)
c) Tìm \(x\in Z\) để \(M\in Z\)
d) tìm GTLN của K biết \(K=\frac{M.3}{x^2+4x+24}\)
Ta có : Để M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right)\left(\frac{x^2+8x+16}{32}\right)=0\)
<=> M=\(\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)=0\)
<=>M=\(\left(\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)
<=>M=\(\left(\frac{32}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)
<=>M=\(\frac{x+4}{x-4}\)
b) Thay x=\(\frac{-3}{8}\) vào M:
M=\(\frac{x+4}{x-4}=\frac{\frac{-3}{8}+4}{\frac{-3}{8}-4}=\frac{-29}{35}\)
c)Hình như sai!
d)
Tìm GTLN:
a)\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\)
b)\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)
a)\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\)
Vì \(-\left|x+\frac{3}{2}\right|\)\(\le\)0
Suy ra:\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)
Dấu = xảy ra khi \(x+\frac{3}{2}=0\)
\(x=-\frac{3}{2}\)
Vậy Max A=\(\frac{1}{4}\) khi \(x=-\frac{3}{2}\)
b)\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)
Vì \(-\left|x-\frac{4}{3}\right|\le0;-\left|y+\frac{1}{2}\right|\le0\)
Suy ra:\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)
Dấu = xảy ra khi \(x-\frac{4}{3}=0;x=\frac{4}{3}\)
\(y+\frac{1}{2}=0;y=-\frac{1}{2}\)
Vậy Max B=\(\frac{5}{3}\) khi \(x=\frac{4}{3};y=-\frac{1}{2}\)
a/ Ta có ; \(\left|x+\frac{3}{2}\right|\ge0\Rightarrow-\left|x+\frac{3}{2}\right|\le0\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)
Vậy BT đạt giá trị lớn nhất bằng 1/4 khi x = -3/2
b/ \(\begin{cases}\left|x-\frac{4}{3}\right|\ge0\\\left|y+\frac{1}{2}\right|\ge0\end{cases}\) \(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\le0\\-\left|y+\frac{1}{2}\right|\le0\end{cases}\)
\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)
\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)
Vậy BT đạt giá trị lớn nhất bằng 5/3 khi x = 4/3 , y = -1/2
a)Đặt \(A=\frac{1}{4}-\left|x+\frac{3}{2}\right|\)
Ta thấy: \(\left|x+\frac{3}{2}\right|\ge0\)
\(\Rightarrow-\left|x+\frac{3}{2}\right|\le0\)
\(\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}-0=\frac{1}{4}\)
\(\Rightarrow A\le\frac{1}{4}\)
Dấu = khi \(x=-\frac{3}{2}\)
Vậy MaxA=\(\frac{1}{4}\Leftrightarrow x=-\frac{3}{2}\)
b)Đặt \(B=\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)
Ta thấy: \(\begin{cases}\left|x-\frac{4}{3}\right|\\\left|y+\frac{1}{2}\right|\end{cases}\ge0\)
\(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\\-\left|y+\frac{1}{2}\right|\end{cases}\)\(\le0\)
\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)
\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}-0=\frac{5}{3}\)
\(\Rightarrow B\le\frac{5}{3}\)
Dấu = khi \(\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{2}\end{cases}\)
Vậy MaxB=\(\frac{5}{3}\Leftrightarrow\)\(\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{2}\end{cases}\)