Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thầy Cao Đô
Xem chi tiết
Capheny Bản Quyền
4 tháng 6 2021 lúc 10:03

\(lim_{x\rightarrow1}\frac{x^3+2x-3}{x^2-x}\)   

\(=lim_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2+x+3\right)}{x\left(x-1\right)}\)   

\(=lim_{x\rightarrow1}\frac{x^2+x+3}{x}\)   

\(=\frac{1^2+1+3}{1}\)   

\(=5\)   

\(lim_{x\rightarrow1}\frac{\sqrt{2x+2}-\sqrt{3x+1}}{x-1}\)   

\(=lim_{x\rightarrow1}\frac{\left(2x+2\right)-\left(3x+1\right)}{\left(x-1\right)\left(\sqrt{2x+2}+\sqrt{3x+1}\right)}\)   

\(=lim_{x\rightarrow1}\frac{2x+2-3x-1}{\left(x-1\right)\left(\sqrt{2x+2}+\sqrt{3x+1}\right)}\)   

\(=lim_{x\rightarrow1}\frac{-x+1}{\left(x-1\right)\left(\sqrt{2x+2}+\sqrt{3x+1}\right)}\)   

\(=lim_{x\rightarrow1}\frac{-1\left(x-1\right)}{\left(x-1\right)\left(\sqrt{2x+2}+\sqrt{3x+1}\right)}\)   

\(=lim_{x\rightarrow1}\frac{-1}{\left(\sqrt{2x+2}+\sqrt{3x+1}\right)}\)   

\(=\frac{-1}{\sqrt{2\cdot1+2}+\sqrt{3\cdot1+1}}\)   

\(=\frac{-1}{2+2}=\frac{-1}{4}\)

Khách vãng lai đã xóa
Trần Hữu Sang
20 tháng 4 2022 lúc 15:26

loading...  

Trần Huỳnh Kim Ngân
20 tháng 4 2022 lúc 15:29

https://drive.google.com/file/d/14Q-YI3szy-rePnIHWGD35RKCWiCXCT6k/view?usp=sharing

https://drive.google.com/file/d/1425SNt8hu4qt2y1kIcnhIvcxPfODsY1T/view?usp=sharing

Thầy Cao Đô
Xem chi tiết
Nguyễn Diệu Linh
2 tháng 5 2022 lúc 14:26

loading...  

Lương Khôi Nguyên
2 tháng 5 2022 lúc 15:24

loading...

Nguyễn Hà Linh
2 tháng 5 2022 lúc 15:32

loading...

Thầy Cao Đô
Xem chi tiết
Phạm Lê Ngọc Mai
27 tháng 4 2022 lúc 15:30

loading...  

Vũ Thị Thanh Hương
27 tháng 4 2022 lúc 15:36

a) \(lim_{x\rightarrow2}\left(\sqrt{x+2}+2018\right)=lim_{x\rightarrow2}\left(\sqrt{2+2}+2018\right)=2020\)

b)\(lim_{x\rightarrow+\infty}\dfrac{3.4^n+2^n}{5.4^n+3^n}=lim_{x\rightarrow+\infty}\dfrac{3+\left(\dfrac{2}{4}\right)^n}{5+\left(\dfrac{3}{4}\right)^n}=\dfrac{3+0}{5+0}=\dfrac{3}{5}\)

c) \(lim_{x\rightarrow-3}\dfrac{x^2+4x+3}{x^2-9}=lim_{x\rightarrow-3}\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=lim_{x\rightarrow-3}\dfrac{x+1}{x-3}=\dfrac{-3+1}{-3-3}=\dfrac{1}{3}\)

Chu Thị Thu Hương
27 tháng 4 2022 lúc 15:52

a) limx→2(√x+2+2018)=√2+2+2018=2020limx→2(x+2+2018)=2+2+2018=2020.

 

b) limn→+∞3.4n+2n5.4n+3n=limn→+∞3+2n4n5+3n4n=limn→+∞3+(12)n5+(34)n=35limn+3.4n+2n5.4n+3n=limn+3+2n4n5+3n4n=limn+3+(12)n5+(34)n=35.

 

limx→−3x2+4x+3x2−9=limx→−3(x+1)(x+3)(x−3)(x+3)=limx→−3x+1x−3=−3+1−3−3=13limx→−3x2+4x+3x2−9=limx→−3(x+1)(x+3)(x−3)(x+3)=limx→−3x+1x−3=−3+1−3−3=13.


 

Thầy Cao Đô
Xem chi tiết
KAl(SO4)2·12H2O
15 tháng 3 2023 lúc 22:20

\(\lim\limits_{x\rightarrow-2}=\dfrac{x-1+\sqrt{2x^2+1}}{4-x^2}\)

\(=\lim\limits_{x\rightarrow-2}=\dfrac{\left[\left(x-1\right)+\sqrt{2x^2+1}\right]\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}{\left(4-x^2\right)\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(x-1\right)^2-\left(2x^2+1\right)}{\left(4-x^2\right)\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{x^2-2x+1-2x^2-1}{\left(4-x^2\right)\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{-x^2-2x}{\left(4-x^2\right)\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}\)

\(=\lim\limits_{x\rightarrow-2}=-\dfrac{x}{\left(2-x\right)\left(x-1-\sqrt{2x^2+1}\right)}\)

\(=-\dfrac{1}{12}\)

Võ Hoàng Phúc Duy
8 tháng 5 2023 lúc 18:19

\(\overset{lim}{x\rightarrow-2}\dfrac{x-1+\sqrt{2x^2+1}}{4-x^2}\) = \(\overset{lim}{x\rightarrow-2}\dfrac{x^2-2x+1-2x^2-1}{\left(4-x^2\right)\left(x-1-\sqrt{2x^2+1}\right)}\)

                                           = \(\overset{lim}{x\rightarrow-2}\dfrac{-x^2-2x}{\left(4-x^2\right)\left(x-1-\sqrt{2x^2+1}\right)}\)

                                          = \(\overset{lim}{x\rightarrow-2}\dfrac{-x\left(x+2\right)}{-\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{2x^2+1}\right)}\)

                                          = \(\overset{lim}{x\rightarrow-2}\dfrac{x}{\left(x-2\right)\left(x-1-\sqrt{2x^2+1}\right)}\)

                                          = \(\dfrac{-2}{\left(-2-2\right)\left[-2-1-\sqrt{2.\left(-2\right)^2+1}\right]}=-\dfrac{1}{12}\)

Trang Thảo
14 tháng 6 2023 lúc 9:36

2

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 11:39

a) Đặt \(f\left( x \right) = 2{x^2} - x\).

Hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\).

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \({x_n} \to 3\) khi \(n \to  + \infty \). Ta có:

\(\lim f\left( {{x_n}} \right) = \lim \left( {2x_n^2 - {x_n}} \right) = 2.\lim x_n^2 - \lim {x_n} = {2.3^2} - 3 = 15\).

Vậy \(\mathop {\lim }\limits_{x \to 3} \left( {2{x^2} - x} \right) = 15\).

b) Đặt \(f\left( x \right) = \frac{{{x^2} + 2x + 1}}{{x + 1}}\).

Hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\).

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \({x_n} \to  - 1\) khi \(n \to  + \infty \). Ta có:

\(\lim f\left( {{x_n}} \right) = \lim \frac{{x_n^2 + 2{x_n} + 1}}{{{x_n} + 1}} = \lim \frac{{{{\left( {{x_n} + 1} \right)}^2}}}{{{x_n} + 1}} = \lim \left( {{x_n} + 1} \right) = \lim {x_n} + 1 =  - 1 + 1 = 0\).

Vậy \(\mathop {\lim }\limits_{x \to  - 1} \frac{{{x^2} + 2x + 1}}{{x + 1}} = 0\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:19

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{9x + 1}}{{3x - 4}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {9 + \frac{1}{x}} \right)}}{{x\left( {3 - \frac{4}{x}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{9 + \frac{1}{x}}}{{3 - \frac{4}{x}}} = \frac{{9 + 0}}{{3 - 0}} = 3\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{7x - 11}}{{2x + 3}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( {7 - \frac{{11}}{x}} \right)}}{{x\left( {2 + \frac{3}{x}} \right)}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{7 - \frac{{11}}{x}}}{{2 + \frac{3}{x}}} = \frac{{7 - 0}}{{2 + 0}} = \frac{7}{2}\)

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {1 + \frac{1}{{{x^2}}}}  = \sqrt {1 + 0}  = 1\)

Hà Quang Minh
22 tháng 9 2023 lúc 21:19

d) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to  - \infty }  - \sqrt {1 + \frac{1}{{{x^2}}}}  =  - \sqrt {1 + 0}  =  - 1\)

e) Ta có: \(\left\{ \begin{array}{l}1 > 0\\x - 6 < 0,x \to {6^ - }\end{array} \right.\)

Do đó, \(\mathop {\lim }\limits_{x \to {6^ - }} \frac{1}{{x - 6}} =  - \infty \)                

g) Ta có: \(\left\{ \begin{array}{l}1 > 0\\x + 7 > 0,x \to {7^ + }\end{array} \right.\)

Do đó, \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}} =  + \infty \)

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 11:16

a: \(=\lim\limits_{x\rightarrow+\infty}\dfrac{4+\dfrac{3}{x}}{2}=\dfrac{4}{2}=2\)

b: \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{2}{x}}{3+\dfrac{1}{x}}=0\)

c: \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x^2}}}{1+\dfrac{1}{x}}=1\)

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 11:43

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{1 - 3{x^2}}}{{{x^2} + 2x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2}\left( {\frac{1}{{{x^2}}} - 3} \right)}}{{{x^2}\left( {1 + \frac{{2x}}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\frac{1}{{{x^2}}} - 3}}{{1 + \frac{2}{x}}} = \frac{{\mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{{x^2}}} - \mathop {\lim }\limits_{x \to  + \infty } 3}}{{\mathop {\lim }\limits_{x \to  + \infty } 1 + \mathop {\lim }\limits_{x \to  + \infty } \frac{2}{x}}} = \frac{{0 - 3}}{{1 + 0}} =  - 3\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{x + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{1 + \frac{1}{x}}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\frac{{\mathop {\lim }\limits_{x \to  - \infty } 2}}{{\mathop {\lim }\limits_{x \to  - \infty } 1 + \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}}} = 0.\frac{2}{{1 + 0}} = 0\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:18

a) \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 4x + 3} \right) = \mathop {\lim }\limits_{x \to 2} {x^2} - \mathop {\lim }\limits_{x \to 2} \left( {4x} \right) + 3 = {2^2} - 4.2 + 3 =  - 1\)

b) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 5x + 6}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {x - 3} \right)\left( {x - 2} \right)}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \left( {x - 2} \right) = \mathop {\lim }\limits_{x \to 3} x - 2 = 3 - 2 = 1\)

c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt x  + 1}} = \frac{1}{{\sqrt 1  + 1}} = \frac{1}{2}\)