Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
QUan
Xem chi tiết
QUan
Xem chi tiết
alibaba nguyễn
1 tháng 10 2016 lúc 21:28

Với n = 2 thì \(\frac{1}{1}+\frac{1}{\sqrt{2}}>\sqrt{2}\)

Giả sử bất đẳng thức đúng đến n = k

=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{K}}>\sqrt{K}\)

Ta chứng minh bất đẳng thức đúng với n = k+1

Ta có \(\frac{1}{\sqrt{1}}+...+\frac{1}{\sqrt{K}}+\frac{1}{\sqrt{K+1}}>\sqrt{K}+\frac{1}{\sqrt{K+1}}\)

\(\frac{1+\sqrt{K^2+K}}{\sqrt{K+1}}\)

Mà ta lại có

\(\frac{1+\sqrt{K^2+K}}{\sqrt{K+1}}-\sqrt{K+1}\)

\(\frac{\sqrt{K^2+K}-K}{\sqrt{K+1}}>0\)

Vậy bất đẳng thức đúng với n = k + 1

=> Điều phải chứng minh

Hoàng Lê Bảo Ngọc
1 tháng 10 2016 lúc 21:37

Ta có \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{n}};...\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}.n=\sqrt{n}\)

QUan
Xem chi tiết
alibaba nguyễn
1 tháng 10 2016 lúc 18:10
lớn hơn bao nhiêu thế
Phạm Bá Tâm
Xem chi tiết
Nguyễn Đăng Nhân
26 tháng 2 2022 lúc 17:06

Xét hạng tổng quát:

\(\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{1}{\sqrt{n}+\sqrt{n-1}}=\frac{\sqrt{n}-\sqrt{n-1}}{n-n+1}=\sqrt{n}-\sqrt{n-1}\)

Áp dụng vào bài, ta có:

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

\(=\left(\sqrt{2}-1\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{n}-\sqrt{n-1}\right)\)

\(=\sqrt{n}-1\)

Khách vãng lai đã xóa
CHU ANH TUẤN
Xem chi tiết
Trương Thanh Long
Xem chi tiết
ღ๖ۣۜLinh
13 tháng 10 2019 lúc 11:45

Đặt \(d=\left(m,n\right)\)

Ta có :\(\hept{\begin{cases}m=ad\\n=bd\end{cases}}\)với \(\left(a,b\right)=1\)

Lúc đó

\(\frac{m+1}{n}+\frac{n+1}{m}=\frac{ad+1}{bd}+\frac{bd+1}{ad}=\frac{\left(a^2+b^2\right)d+a+b}{abd}\)là số nguyên

Suy ra \(a+b⋮d\Rightarrow d\le a+b\Rightarrow d\le\sqrt{d\left(a+b\right)}=\sqrt{m+n}\)

Vậy \(\left(m,n\right)\le\sqrt{m+n}\)(đpcm)

Xem chi tiết
Lê Khôi Mạnh
1 tháng 3 2018 lúc 15:14

thầy nói đề sai rồi mà 

phải là cm ƯCLN của a và b ko lớn hơn \(\sqrt{m+n}\)

shitbo
8 tháng 5 2020 lúc 17:10

Gọi \(gcd\left(m;n\right)=d\Rightarrow m=ad;n=bd\left(a,b\inℕ^∗\right)\) và \(\left(m;n\right)=1\)

Ta có:

\(\frac{m+1}{n}+\frac{n+1}{m}=\frac{m^2+m+n^2+n}{mn}=\frac{\left(a^2+b^2\right)d+\left(a+b\right)}{abd}\)

\(\Rightarrow a+b⋮d\Rightarrow a+b\ge d\Rightarrow d\le\sqrt{d\left(a+b\right)}=\sqrt{m+n}\)

Vậy ta có đpcm

Khách vãng lai đã xóa

shitbo

Bài từ lâu, giờ mò lại làm vui ha :)))

Khách vãng lai đã xóa
Trà Nhật Đông
Xem chi tiết
Nguyễn Đức Trọng
Xem chi tiết