Cho n là số tự nhiên lớn hơn 1 CMR
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\sqrt{n}\)
Cho n là số tự nhiên lớn hơn 1
CMR \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>\sqrt{n}\)
Cho n là số tự nhiên lớn hơn 1
CMR \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>\sqrt{n}\)
cho A=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n^2}}\)
với n thuộc N , n>=2
cmr; A không phải là số tự nhiên
Tìm số tự nhiên n nhỏ nhất sao cho\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\ge\)2014
a. Chứng minh: \(\sqrt{n+1}-\sqrt{n}>\frac{1}{2\sqrt{n}+1}\) (với n là số tự nhiên)
b. Chứng minh :\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2005}}< 2.\sqrt{2005}\)
a)CMinh: Với mọi số tự nhiên n ta có \(\sqrt{n+1}-\sqrt{n}>\frac{1}{\sqrt{n+1}}\)
b)CMinh: \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}< 2\sqrt{2016}\)
chứng minh \(\frac{1}{\sqrt{1.2}3}+\frac{1}{\sqrt{2.3}4}+....+\frac{1}{\sqrt{n\left(n+1\right)}\left(n+2\right)}\)<\(\frac{1}{\sqrt{2}}\)với mọi n là số tự nhiên
giả sử n là 1 số tự nhiên .chứng minh \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}<2\)