cho a,b,c khác 0 sao cho a+b-c/c=a-b+c/b=-a+b+c/c Tính giá trị biểu thức M=(a+b).(b+c).(c+a)/a.b.c
Cho các số a,b,c khác 0 sao cho \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
Tính giá trị biểu thức M\(=\frac{\left(a+b\right).\left(a+c\right).\left(b+c\right)}{a.b.c}\)
\(Tacó\)
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b+a+c+b+c-a-b-c}{a+b+c}=1\)
\(\Rightarrow a+b=2c;b+c=2a;c+a=2b\)
\(\Leftrightarrow a=b=c\)
\(\Rightarrow\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}=\frac{2c.2c.2c}{c^3}=8\)
\(Taco:\)
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b+a+c+b+c-a-b-c}{a+b+c}=1\)
\(\Rightarrow a+b=2c;b+c=2a;c+a=2b\)
\(\Leftrightarrow a=b=c\)
\(\Rightarrow\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}=\frac{2c.2c.2c}{c^3}=8\)
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhé
Cho biết a;b;c là các số khác 0.thỏa mãn :a+b-c/c = b+c-a/a = c+a-b/b.
Hãy tính giá thị của biểu thức sau: M=(a+b).(b+c).(c+a/a.b.c
cho a,b,c khác 0 và \(\frac{b+c-a}{c}=\frac{a+b+c}{b}=\frac{b-c+a}{a}\).Tính giá trị của biểu thức A=\(\frac{\left(b-a\right).\left(c+b\right).\left(a+c\right)}{a.b.c}\)
Đặt \(\frac{b+c-a}{c}=\frac{a+b+c}{b}=\frac{b-c+a}{a}=k\)
\(\Rightarrow\hept{\begin{cases}b+c-a=ck\\a+b+c=bk\\b-c+a=ak\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2b=k\left(a+c\right)\left(1\right)\\2c=k\left(b-a\right)\left(2\right)\\2b+2c=b\left(b+c\right)\Rightarrow k=2\end{cases}}\)
Thay k=2 vào (1) và (2) :
\(\hept{\begin{cases}2b=2\left(a+c\right)\\2c=2\left(b-a\right)\end{cases}\Rightarrow\hept{\begin{cases}b=a+c\\c=b-a\Rightarrow a=b-c\end{cases}}}\)
Vậy \(\frac{\left(b-a\right)\left(c+b\right)\left(a+c\right)}{abc}=\frac{\left(b-a\right)\left(c+b\right)\left(a+c\right)}{\left(b-c\right)\left(a+c\right)\left(b-a\right)}=\frac{b+c}{b-c}\)
cho a.b.c khác 0 và
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
tính giá trị biểu thức P=\(\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)( a, b, c khác 0 )
=> \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=1\)
=> \(\hept{\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Thế vào P ta được :
\(P=\frac{2c}{a}\cdot\frac{2a}{b}\cdot\frac{2b}{c}=\frac{8abc}{abc}=8\)
Cho a, b, c là cá số khác 0 sao cho a+b-c/c = a-b+c /b =-a+b+c/a
Tính giá trị biểu thức M=(a+b)(b+c)(c+a)/abctheo bài ra, ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
áp dụng tính chất ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c+-a+b+c}{c+b+a}=\frac{a+b+c}{c+b+a}=1\)
=> a + b - c = c => a + b = 2c (1)
=> a - b +c = b => a+c = 2b (2)
=> -a +b +c = a => b + c = 2a (3)
thay 1, 2 và 3 vào biểu thức M ta có:
\(M=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)
vậy M = 8
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{c+b+a}\)
\(=\frac{a+b+c}{a+b+c}\left(1\right)\)
Xét 2 trường hợp:
TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\)Ta có: \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{-c.\left(-a\right).\left(-b\right)}{abc}=-1\)
TH2: \(a+b+c\ne0\)Từ (1) => \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=1\)
\(\Rightarrow\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}\)
Ta có: \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2b.2a}{abc}=8\)
Cho a,b,c thuộc Q và khác 0 sao cho
a+b-c/c=a-b+c/b=a+b+c/a
Tính giá trị biểu thức M=(a+b)(b+c)(c+a)/abc
Cho a,b,c là ba số khác 0 sao cho : \({a+b-c \over c}={a-b+c\over b}={-a+b+c\over a}\)
Tính giá trị biểu thức \(M = (a+b)×(b+c)×(c+a)/a×b×c\)
cho a,b,c là các số khác 0 thỏa mãn;
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
tính giá trị của biểu thức : \(\frac{\left(a+b\right).\left(b+c\right).\left(c+a\right)}{a.b.c}\)
Cho a/b=b/c=c/a với a+b+c khác 0. Hãy tính giá trị biểu thức M=a^2+b^2+c^2/(a+b+c)^2
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Suy ra \(a=b=c\).
Khi đó: \(M=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\).