Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Neo Amazon
Xem chi tiết
shitbo
1 tháng 1 2019 lúc 19:19

\(Tacó\)

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b+a+c+b+c-a-b-c}{a+b+c}=1\)

\(\Rightarrow a+b=2c;b+c=2a;c+a=2b\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}=\frac{2c.2c.2c}{c^3}=8\)

\(Taco:\)

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b+a+c+b+c-a-b-c}{a+b+c}=1\)

\(\Rightarrow a+b=2c;b+c=2a;c+a=2b\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}=\frac{2c.2c.2c}{c^3}=8\)

Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhé

nguyễn thị mai chi
Xem chi tiết
no name
Xem chi tiết
Cold Wind
15 tháng 1 2017 lúc 11:46

Đặt \(\frac{b+c-a}{c}=\frac{a+b+c}{b}=\frac{b-c+a}{a}=k\)

\(\Rightarrow\hept{\begin{cases}b+c-a=ck\\a+b+c=bk\\b-c+a=ak\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2b=k\left(a+c\right)\left(1\right)\\2c=k\left(b-a\right)\left(2\right)\\2b+2c=b\left(b+c\right)\Rightarrow k=2\end{cases}}\)

Thay k=2 vào (1) và (2) : 

\(\hept{\begin{cases}2b=2\left(a+c\right)\\2c=2\left(b-a\right)\end{cases}\Rightarrow\hept{\begin{cases}b=a+c\\c=b-a\Rightarrow a=b-c\end{cases}}}\)

Vậy \(\frac{\left(b-a\right)\left(c+b\right)\left(a+c\right)}{abc}=\frac{\left(b-a\right)\left(c+b\right)\left(a+c\right)}{\left(b-c\right)\left(a+c\right)\left(b-a\right)}=\frac{b+c}{b-c}\)

loan thanh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
16 tháng 10 2020 lúc 10:44

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)( a, b, c khác 0 )

=> \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=1\)

=> \(\hept{\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

Thế vào P ta được :

\(P=\frac{2c}{a}\cdot\frac{2a}{b}\cdot\frac{2b}{c}=\frac{8abc}{abc}=8\)

Khách vãng lai đã xóa
Đỗ Tú Anh
Xem chi tiết
Trang
28 tháng 10 2016 lúc 20:40

theo bài ra, ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

áp dụng tính chất ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c+-a+b+c}{c+b+a}=\frac{a+b+c}{c+b+a}=1\)

=> a + b - c = c => a + b = 2c (1)

=> a - b +c = b => a+c = 2b (2)

=> -a +b +c = a => b + c = 2a (3)

thay 1, 2 và 3 vào biểu thức M ta có:

\(M=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)

vậy M = 8

soyeon_Tiểubàng giải
28 tháng 10 2016 lúc 20:58

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{c+b+a}\)

\(=\frac{a+b+c}{a+b+c}\left(1\right)\)

Xét 2 trường hợp:

TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\)

Ta có: \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{-c.\left(-a\right).\left(-b\right)}{abc}=-1\)

TH2: \(a+b+c\ne0\)

Từ (1) => \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=1\)

\(\Rightarrow\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}\)

Ta có: \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2b.2a}{abc}=8\)

 

Nguyễn Trọng Tấn
Xem chi tiết
Nguyễn Trọng Tấn
10 tháng 7 2016 lúc 15:05

sao ko aj trả lời za

My
Xem chi tiết
Bùi Quang Vinh
Xem chi tiết
Đoàn Thế Vinh
Xem chi tiết
Đoàn Đức Hà
10 tháng 11 2021 lúc 9:54

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Suy ra \(a=b=c\).

Khi đó: \(M=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\).

Khách vãng lai đã xóa