Tìm x,y là số nguyên thỏa mãn \(10y^2+x^2-6xy-5y+6=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-6y+9\right)=5\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-3\right)^2=5\)
\(\Leftrightarrow\left(x-2y\right)^2=5-\left(y-3\right)^2\) (1)
Do \(\left(x-2y\right)^2\ge0;\forall x;y\)
\(\Rightarrow5-\left(y-3\right)^2\ge0\Rightarrow\left(y-3\right)^2\le5\)
\(\Rightarrow\left[{}\begin{matrix}\left(y-3\right)^2=0\\\left(y-3\right)^2=1\\\left(y-3\right)^2=4\end{matrix}\right.\)
Thay vào (1):
- Với \(\left(y-3\right)^2=0\) \(\Rightarrow\left(x-2y\right)^2=5\) vô nghiệm do 5 ko phải SCP
- Với \(\left(y-3\right)^2=1\Rightarrow\left[{}\begin{matrix}y=4\\y=2\end{matrix}\right.\)
\(y=4\Rightarrow\left(x-8\right)^2=4\Rightarrow\left[{}\begin{matrix}x=10\\x=6\end{matrix}\right.\)
\(y=2\Rightarrow\left(x-4\right)^2=4\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)
- Với \(\left(y-3\right)^2=4\Rightarrow\left[{}\begin{matrix}y=5\\y=1\end{matrix}\right.\)
\(y=5\Rightarrow\left(x-10\right)^2=1\Rightarrow\left[{}\begin{matrix}x=11\\x=9\end{matrix}\right.\)
\(y=1\Rightarrow\left(x-2\right)^2=1\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Em tự kết luận các cặp nghiệm
Chắc phải là cặp số nguyên chứ có vô số cặp x;y bất kì thỏa mãn pt này
Tìm các số nguyên x, y thỏa mãn: 10y2 + x2 – 6xy - 5y +6 = 0
1, Tìm số tự nhiên x,y thỏa mãn:
a, 5x-y=13
b, 23x+53y=109
c, 12x-5y=21
d, 12x+17y=41
2, Tìm số nguyên x,y thỏa mãn:
a, 5(x+y)+2=3xy
b, 2(x+y)=5xy
c, 3x+7=y(x-3)
A, chứng tỏ:-0,3(43^43-17^17) là số nguyên
B, tìm x y nguyên thỏa mãn
x/3-7/y=2/3
Bài 1:Cho a,b là các số nguyên tố thỏa mãn: (a-1) chia hết cho b và (b3 - 1) chia hết cho a.Chứng minh: a= b2+b+1
Bài 2:Cho x,y là hai số thực thỏa mãn:
x3 + y3 +3x2 + 4x + 3y2 +4y +4=0.Tìm giá trị lớn nhất của biểu thức P=1/x+1/y
1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)
b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)
cho p là số nguyên tố. Tìm tất cả các số nguyên a thỏa mãn a^2+a-p=0
tìm các số nguyên x;y thỏa mãn: x(y+2)-y=3
Ta có :
x(y + 2) - y = 3
xy + 2x - y = 3
xy - y + 2x - 2 = 3 - 2
(x - 1)y + 2(x - 1) = 1
(2 + y)(x - 1) = 1 = 1.1 = (-1).(-1)
Xét 2 trường hợp ,ta có :
\(\left(1\right)\hept{\begin{cases}2+y=1\\x-1=1\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=2\end{cases}}}\)
\(\left(2\right)\hept{\begin{cases}2+y=-1\\x-1=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-3\\x=0\end{cases}}}\)
tìm số nguyên x, y thỏa mãn 2x^2+y^2=2007