Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phan thị minh anh
Xem chi tiết
Huỳnh Diệu Bảo
Xem chi tiết
alibaba nguyễn
27 tháng 1 2017 lúc 13:13

3(x2 + xy + y2) = x + 8y

<=> 3x2 + (3y - 1)x + (3y2 - 8y) = 0

Để phương trình theo nghiệm x có nghiệm thì

∆ = (3y - 1)2 - 4.3.(3y2 - 8y) \(\ge\)0

<=> - 27y2 + 90y + 1 \(\ge\)0

<=> - 0,011 \(\le\)\(\le\)3,344

Mà vì y nguyên nên

\(\Rightarrow0\le y\le3\)

\(\Rightarrow\)y = (0, 1, 2, 3)

\(\Rightarrow\)x = (...)

Cặp nào nguyên thì nhận. Không nguyên thì loại

Hồng Minh
Xem chi tiết
Akai Haruma
10 tháng 2 2017 lúc 0:58

Câu 1)

Thử \(x=1,2,3,4,5\) ta thấy chỉ \(x=1\) thỏa mãn \(y=1\)

Với \(x\geq 6\)

Để ý rằng \(1!+2!+3!+...+x!=3+3!+4!+...+x!\) luôn chia hết cho $3$. Do đó \(y^3\vdots 3\rightarrow y\vdots 3\rightarrow y^3\vdots 27\)

Với \(x\geq 6\) thì \(x!\) luôn chia hết cho $27$. Do đó để \(y^3\vdots 27\) thì \(1!+2!+...+5!\) cũng phải chia hết cho $27$ hay $153$ chia hết cho $27$. Điều này vô lý.

Do đó phương trình chỉ có bộ nghiệm \((x,y)=(1,1)\) thỏa mãn.

Akai Haruma
10 tháng 2 2017 lúc 1:48

Bài 2)

Ta thấy \(3(x^2+y^2+xy)=x+8y\geq 0\) nên chắc chắn tồn tại ít nhất một số nguyên không âm.

TH1: \(x\geq 0\)

\(\text{PT}\Leftrightarrow 3y^2+y(3x-8)+3x^2-x=0\)

Để PT có nghiệm thì \(\Delta=(3x-8)^2-12(3x^2-x)\geq 0\)

\(\Leftrightarrow -27x^2-36x+64\geq 0\)

Giải HPT trên ta suy ra \(x\leq 1\). Do đó \(x=0\) hoặc $1$

Nếu \(x=0\Rightarrow y=0\)

Nếu \(x=1\rightarrow y=1\)

TH2: \(x<0\) thì \(y> 0\)

\(\text{PT}\Leftrightarrow 3x^2+x(3y-1)+3y^2-8y=0\)

Để PT có nghiệm thì \(\Delta =(3y-1)^2-12(3y^2-8y)\geq 0\)

\(\Leftrightarrow -27y^2+90y+1\geq 0\rightarrow y\leq 3\rightarrow y=1,2,3\)

Nếu \(y=1\rightarrow x=1\)

Nếu \(y=2,3\) không có $x$ thỏa mãn.

Vậy \((x,y)=(0,0),(1,1)\)

Hồng Minh
Xem chi tiết
alibaba nguyễn
27 tháng 11 2016 lúc 4:44

Với có ít nhất x,y = 1 thì VT > VP

Với x > 1, y > 1 thì

\(\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{y^2}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}< 1\)

Hay VT < 1

Vậy PT không có nghiệm nguyên dương

Cuồng Song Joong Ki
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 10 2016 lúc 10:46

3/ \(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+2\left(\frac{16}{ab}+ab\right)+\frac{2}{ab}\ge\)

\(\ge\frac{2.4}{\left(a+b\right)^2}+4\sqrt{\frac{16}{ab}.ab}+\frac{2.4}{\left(a+b\right)^2}\ge\frac{8}{4^2}+4\sqrt{16}+\frac{8}{4^2}=17\)

Dấu "=" xảy ra khi a = b = 2

Vậy Min P = 17 <=> a = b = 2

Nguyễn Trần Duy Thiệu
Xem chi tiết
nguyễn thị lan hương
17 tháng 11 2018 lúc 21:10

\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)

\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)

Nguyễn Ngọc Mai Anh
17 tháng 11 2018 lúc 21:31

2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)

TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)

TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)

TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

Vậy......

nguyễn thị lan hương
17 tháng 11 2018 lúc 21:53

bạn mai anh làm đúng rồi mình xét thiếu trường hợp . nhưng nên phân tích thành (x+y)(x-y)dễ hơn

Đinh Nguyễn Nguyệt Hà
Xem chi tiết
Trần Thị Loan
1 tháng 8 2015 lúc 16:59

=> 5x2 + 5xy + 5y2 = 7x + 14y

=> 5x2 + 5xy - 7x + 5y- 14y = 0 

=> 5x+ (5y -7).x + (5y - 14y) = 0   (*)

Tính \(\Delta\) = (5y - 7)- 4.5.(5y - 14y) = -75y2 + 210y + 49  

Để x nguyên thì \(\Delta\) là số chính phương <=> -75y2 + 210y + 49  = k( với k nguyên)

=> - 3. (25y- 2.5y.7 + 49) + 196 = k2

=> -3.(5y - 7)+ 196 = k2

=> 3.(5y - 7)+ k= 196 => 3. (5y-7)2  \(\le\) 196 => (5y - 7)2  \(\le\) 66 =>-8  \(\le\)  5y - 7 \(\le\) 8

=> -1/5  \(\le\) y \(\le\) 3

y nguyên nên y có thể bằng 0; 1;2;3

Với tưng giá trị của y ta thay vào (*) => x 

Các giá trị x; y nguyên tìm được là các giá trị thỏa mãn yêu cầu

Long Nguyễn
Xem chi tiết
Trần Nguyễn Khánh Linh
Xem chi tiết
khánhchitt3003
16 tháng 9 2017 lúc 22:04

đặt x+y=a

xy=b

ntc a-2

Trần Nguyễn Khánh Linh
16 tháng 9 2017 lúc 22:06

chụp cho tớ 20 bài bđt đi chi