chung minh rang voi moi n thuoc N* thi 1^3+2^3+3^3+...+n^3= (1+2+3+...+n)^3
chung minh rang 11^n+2+12^2n+1 chia het cho 133
chung minh rang A=(17^n+1)(17^n+2)chia het cho 3 voi moi n thuoc N
cho (2a+7b) chia het cho 3 ( a b thuoc N). chung to (4a+2b) chia het cho 3
chung minh rang : voi moi n thuoc N thi (n+8)(n+3) chia het cho 2
Để chứng minh , ta xét 2 trường hợp
TH1: n là số lẻ
=> (n+8)(n+3)=lẻ x chẵn .( Vì số lẻ cộng với số chẵn ta đc số lẻ , số lẻ cộng với số lẻ ta đc một số chẵn)
Mà số chẵn nào cũng chia hết cho 2
=> (n+8)(n+3) chia hết cho 2.(1)
TH2 : n là số chẵn
=> (n+8)(n+3)= chẵn x lẻ .(Vì số chẵn cộng với số chẵn ta đc số lẻ , số chẵn cộng với số lẻ ta đc một số lẻ)
Mà số chẵn nào cũng chia hết cho 2
=> (n+8)(n+3) chia hết cho 2.(2)
Từ (1) và (2)
=>(n+8)(n+3) luôn chia hết cho 2 với mọi n thuộc N
chung minh rang voi moi n thuoc N :
A=1-3+3^2-3^3+3^4-3^5+....+3^98-3^99
chung minh rang moi so tu nhien n thuoc N* thi n^2 - n +3 ko chia het cho 2
Nếu n là chẵn thì n^2 chẵn và n+3 lẻ => n^2-(n+3) là lẻ => n^-n+3 không chia hết cho 2( n khác 0 vì n thuộc n sao )
Nếu n là lẻ thì n^2 là lẻ và n+3 chẵn => n^2-(n+3) là lẻ => n^2-(n+3) không chia hết cho 2
chung minh rang voi moi N nguyen duong thi 3^n+2 - 2^n+2 + 3^n - 2^n chia het cho 10
3^n+2-2^n+2+3^n-2^n
=3^n+2+3^n-(2^n+2+2^n)
=3^n(3^2+1)-2^n(2^2+1)
=3^n.10-2^n.5=3^n.10-2^n-1.10=10(3^n-2^n-1) chia hết cho 10(đpcm)
chung minh rang : voi moi so nguyen duong n thi :3n+2 -2n+2 +3n -2n chia het cho 10
\(3^{n+2}-2 ^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(2^n-2^{n-1}\right).10\) chia hết cho 10
chung minh rang:1/12<1/2^3+1/3^3+...+1/n^3+...+1/2017^3<505/2018(voi moi n>1)
\(A=\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}+\dfrac{1}{2017^3}\)
\(A=\dfrac{1}{8}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}+\dfrac{1}{2017^3}>\dfrac{1}{8}>\dfrac{1}{12}\left(1\right)\)
Xét thừa số tổng quát: \(\dfrac{1}{n^3}< \dfrac{1}{n^3-n}=\dfrac{1}{n\left(n^2-1\right)}=\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)
Hay:
\(A< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}+...+\dfrac{1}{2016.2017.2018}\)
\(A< \dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+..+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}+...+\dfrac{1}{2016.2017}-\dfrac{1}{2017.2018}\right)\)
\(A< \dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2017.2018}\right)=\dfrac{1}{4}-\dfrac{1}{2.2017.2018}< \dfrac{1}{4}< \dfrac{505}{5028}\left(2\right)\)
Từ (1) và (2) ta có đpcm
chung to rang voi moi n thuoc Z thi
a)(n+6)x(n+7) chia het cho 2
b) n2 +n+3 khong chia het cho 2
a) n có 2 trường hợp
Với n = 2k +1 ( k thuộc Z)
=> (2k+1+6) . (2k+1+7)
= (2k + 7) .( 2k + 8)
= (2k + 7) . 2.(k+4) (chia hết cho 2) ( 1 )
Với n = 2k
=> (2k + 6) . ( 2k + 7)
= 2. (k+3) . ( 2k + 7) ( chia hết cho 2) (2 )
Từ 1 và 2
=> moi n thuoc Z thi
(n+6)x(n+7) chia het cho 2
a) + Nếu n lẻ thì n + 7 chẵn => n + 7 chia hết cho 2 => (n + 6).(n + 7) chia hết cho 2
+ Nếu n chẵn thì n + 6 chẵn => n + 6 chia hết cho 2=> (n + 6).(n + 7) chia hết cho 2
=> (n + 6).(n + 7) luôn chia hết cho 2
Nói ngặn gọn hơn là: Do (n + 6).(n + 7) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2
b) n2 + n + 3
= n.(n + 1) + 3
Vì n.(n + 1) là tích 2 số tự nhiên nên chia hết cho 2; 3 không chia hết cho 2
=> n2 + n + 3 không chia hết cho 2
chung minh rang voi moi so tu nhien n thi uoc chung lon nhat (21n+4;14n+3)=1
Gọi UCLN(21n+4,14n+3)=d
Ta có: 21n+4 chia hết cho d => 2(21n+4) chia hết cho d => 42n+8 chia hết cho d
14n+3 chia hết cho d => 3(14n+3) chia hết cho d => 42n+9 chia hết cho d
=> 42n+9-(42n+8) chia hết cho d
=> 1 chia hết cho d
=> d=1 (dpdcm)