cho 3 số tự nhiên liên tiếp có tổng bình phương 2 số đầu bằng bình phương số cuối . tìm 3 số
Cho 3 số tự nhiên liên tiếp có tổng các bình phương của 2 số đầu bằng bình phương số cuối . Số tự nhiên nhỏ nhất là ...........
Gọi 3 số tự nhiên liên tiếp lần lượt là a,a+1,a+2 (a \(\in\) N)
Có: a2+(a+1)2=(a+2)2
=>a2+a2+2a+1=a2+4a+4
=>a2+2a+1=4a+4
=>a2+1=2a+4
=>a2+1-2a-4=0
=>a2-2a-3=0
=>a2-3a+a-3=0
=>a(a-3)+(a-3)=0
=>(a+1)(a-3)=0
=>a=-1 hoặc a=3
Mà a \(\in\) N
=>a=3
Vậy STN nhỏ nhất là 3
Gọi 3 số đó là a ; a + 1 và a + 2
Có :
\(a^2+\left(a+1\right)^2=\left(a+2\right)^2\)
\(2a^2+2a+1=a^2+4+4a\)
\(\Rightarrow a^2=3+2a\)
\(a^2-2a-3=0\)
\(\left(a^2-3a\right)+\left(a-3\right)=0\)
\(\left(a-3\right)\left(a+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=3\\a=-1\end{cases}}\)
Mà a là số tự nhiên nên a = 3
Vậy ...
Gọi 3 số tnlt lần lượt là k,k+1,k+2
Theo bài ra ta có:
a2+(a+1)2=(a+2)2
=>2a2+2a+1=a2+4+4a=>a2=3+2a=>a2-3-2a=0
=>a2-3a+a-3=0=>(a2-3a)+(a-3)=0
=>(a-3)(a+1)=0
=>a-3=0 hoặc a+1=0
=>a=3 hoặc a=-1
Mà a là STN =>a=3
Vậy số cần tìm là 3
Cho 3 số tự nhiên liên tiếp có tổng các bình phương của 2 số bằng bình phương số cuối số tự nhiên nhỏ nhất là
tìm 3 số nguyên liên tiếp biết tổng các bình phương số đầu bằng bình phương số cuối
Gọi 3 số nguyên liên tiếp là a-1, a, a+1 (a ∈ Z)
Theo đề ta có \(\left(a-1\right)^2+a^2=\left(a+1\right)^2\)
\(\Leftrightarrow a^2-2a+1+a^2=a^2+2a+1\)
\(\Leftrightarrow a^2-4a=0\)
\(\Leftrightarrow a\left(a-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=4\end{matrix}\right.\)
Vậy có 2 cặp 3 số nguyên liên tiếp đó là \(\left(-1;0;1\right)\) và \(\left(3;4;5\right)\)
Tick nha bạn 😘
Chứng tỏ rằng bình phương của 1 số lẻ bằng tổng bình phương của 2 số tự nhiên liên tiếp trong đó số lớn cũng bằng tổng bình phương của 2 số tự nhiên liên tiếp
tìm 3 số tự nhiên liên tiếp biết tích hai số cuối hơn bình phương số đầu là 38 đơn vị
cho 3 số tự nhiên liên tiếp biết bình phương số cuối lớn hơn tích 2 số đầu 79 đơn vị. Số bé nhất trong 3 số đã cho là
Gọi 3 số tự nhiên liên tiếp đó là \(a;a+1;a+2\left(a\in N\right)\)
Theo đề bài ta có :
\(\left(a+2\right)^2-a\left(a+1\right)=79\)
\(\Leftrightarrow a^2+4a+4-a^2-a=79\)
\(\Leftrightarrow\left(a^2-a^2\right)+\left(4a-a\right)+4=79\)
\(\Leftrightarrow3a+4=79\)
\(\Rightarrow a=25\)
Vậy 3 số tự nhiên liên tiếp cần tìm là 25; 26; 27
Chứng minh 3 số tự nhiên liên tiếp có tích số đầu và số cuối kém bình phương số giữa 1 đơn vị
Dễ thôi
Gọi ba số tự nhiên liên tiếp lần lượt là n;n+1;n+2
Tích cùa số đầu và số cuối là: \(n\left(n+2\right)=n^2+2n\)
Bình phương số giữa: \(\left(n+1\right)^2=n^2+2n+1\)
Dễ thấy hiệu hai giá trị trên là 1 => đpcm
3 số tự nhiên lẻ liên tiếp có tích 2 số sau là lớn hơn tổng bình phương 2 số đầu là 38 ^^
Cho bốn số hạng liên tiếp của một cấp số cộng, có tổng của chúng bằng 16 và tổng bình phương của chúng bằng 84. Tính tổng hai bình phương số hạng đầu và số hạng cuối của bốn số hạng đó.
A. 34
B. 64
C. 50
D. 49
Đáp án C
Gọi d = 2 x là công sai
ta có bốn số là a - 3 x , a - x , a + x , a + 3 x
Khi đó, từ giả thiết ta có:
⇔ 1 , 3 , 5 , 7 7 , 5 , 3 , 1
Tổng bình phương của số hạng đầu và cuối là 1 2 + 7 2 = 50