a) C=3+ 3 mũ1+3 mũ2+3 mux3+.....+3 mũ100
b)chứng tỏ vì sao chia hết cho 40
Chứng minh rằng : A chia hết cho 21
A = 2 + 2 mũ1 + 2 mũ2 .....+2 mũ90
Có 90 số hạng nên ghép từng cặp 2 số ta có
A= (2+22)+(23+24)...+(289+290)
= 2(1+2)+23(1+2)+...+289(1+2)
= 2.3+22.3+...+289.3 chia hết cho 3
ghép từng cặp 3 số
A= (2+22+23)+....+(288+289+290)
= 2(1+2+22)+....+288(1+2+22)
= 2.7+....+288.7 chia hết cho 7
mà (3;7)=1 => A chia hết cho 3.7=21
CHo A=2+2 mũ2+2 mũ3+.....+2 mũ 2020+2 mũ 2021+ 2 mũ 2022 Chứng tỏ rằng A chia hết cho 3
`#3107.101107`
\(A = 2 + 2^2 + 2^3 + ... + 2^{2020} + 2^{2021} + 2^{2022}\)
\(= (2 + 2^2) + (2^3 + 2^4) + ... + (2^{2021} + 2^{2022})\)
\(=2(1+2) + 2^3(1 + 2) + ... + 2^{2021}(1 + 2)\)
\(=(1 + 2)(2 + 2^3 + ... + 2^{2021})\)
\(= 3(2 + 2^3 + ... + 2^{2021})\)
Vì \(3(2 + 2^3 + ... + 2^{2021})\) \(\vdots\) \(3\)
`\Rightarrow A \vdots 3`
Vậy, `A \vdots 3.`
cho A=3+3^2+3^3+...+3^16
a)chứng tỏ A chia hết cho 4
b)Hỏi A có chia hết cho 13 không ?Vì sao?
ta có :
A= (3+3^2)+(3^3+3^4)+.......+ (3^15+3^16)
A=3.(3+1)+3^3.(3+1)+.....+3^15.(3+1)
A= 3.4+3^3.4+......+3^15.4
A=4.(3+3^3+.....+3^15) chia hết cho 4
vậy a chia hết cho 4
b. Ta có :
A= (3+3^2+3^3)+......+(3^14+3^15+3^16)
A=3.(1+3+3^2)+.....+3^14.(1+3+3^2)
A=3.13+.....+3^14.13 chia hết cho 13
Vậy A chia hết cho 13
Rút Gọn
A=2 mũ1+2 mũ2+2 mũ 3+...+2 mũ10
B=3 mux1+3 mũ 2+3 mũ 3+...+3 mũ 100
\(A=2^1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2\cdot\left(2+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow2A=2^2+2^3+...+2^{11}\)
\(\Rightarrow2A-A=\left(2^2+2^3+...+2^{11}\right)-\left(2+2^2+...2^{10}\right)\)
\(\Rightarrow A=2^{11}-2\)
\(B=3^1+3^2+...+3^{100}\)
\(\Rightarrow3B=3\cdot\left(3+3^2+...+3^{100}\right)\)
\(\Rightarrow3B=3^2+3^3+...+3^{101}\)
\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2B=3^{101}-3\)
\(\Rightarrow B=\dfrac{3^{101}-3}{2}\)
a/Chứng tỏ rằng: 2x + 3y chia hết cho 17<=> 9x=5y chia hết cho 17
b/ cho C= 3+3^2 +3^3+3^4+...+3^100. chứng tỏ C chia hết cho 40
c/ tìm các số nguyễn x, y thỏa mãn (x-2)^2.(y-3)=-4
Chứng tỏ
A=3+3²+3⁴+...+3¹ ⁰¹+3¹⁰² ko chia hết cho 40
B= 4+4²+4³+...+4⁹⁹ chia hết cho 21
C=1+5+5²+...+5¹⁰² ko chia hết cho 30
\(A=3+3^2+...+3^{101}+3^{102}\) (thêm 33 bi sót)
\(\Rightarrow A+1=1+3+3^2+...+3^{101}+3^{102}\)
\(\Rightarrow A+1=\dfrac{3^{102+1}-1}{3-1}\)
\(\Rightarrow A+1=\dfrac{3^{103}-1}{2}\)
\(\Rightarrow A=\dfrac{3^{103}-1}{2}-1\)
\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\)
mà \(\left(3^{102}-1\right)\) không chia hết cho 2;4;5
\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\) không chia hết cho 2;4;5
\(\Rightarrow A\) không chia hết cho 40 \(\left(vì40=2.4.5\right)\)
\(B=4+4^2+4^3+...+4^{99}\)
\(\Rightarrow B=4\left(1+4^1+4^2\right)+4^4\left(1+4^1+4^2\right)...+4^{97}\left(1+4^1+4^2\right)\)
\(\Rightarrow B=4.21+4^4.21+...+4^{97}.21\)
\(\Rightarrow B=21\left(4+4^4+...+4^{97}\right)⋮21\)
\(\Rightarrow dpcm\)
A = 3 + 32 + 33 +...+ 3101+ 3102
3A = 32 + 33 +...+ 3101 + 3102 + 3103
3A - A = 3103 - 3
2A = 3103 - 3
2A = 3103 - 3 = (34)25.33 - 3 = \(\left(\overline{..1}\right)^{25}\).27 - 3 = \(\overline{..4}\)
⇒ A = \(\overline{..2}\); \(\overline{..7}\)
Vì A là tổng của 102 số lẻ nên A là số chẵn ⇒ A = \(\overline{..2}\)
Vậy A không chia hết cho 10 hay A không chia hết cho 40 (đpcm)
Cho C= 1+3+3^2+3^3+....+3^11 chứng tỏ rằng
a) C chia hết cho 13
b) C chia hết cho 40
a, Chứng tỏ ab(a+b) chia hết cho 2 với
b, tổng của 3 số tự nhiên liên tiếp có chia hết cho 3 ko ? Vì sao?
c , chứng tỏ tích của 4 số tự nhiên liên tiếp chia hết co 4
achia het cho 2,b chic het cho 2 thi(a+b)chia het cho 2
Cho A = 3 + 3^2 + 3^3 + ... + 3^120. Chứng tỏ:
a, A chia hết cho 13; 40.
b, A không chia hết cho 9.
c, 2A + 3 không phải là số chính phương
a/
\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)
\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)
\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)
b/
\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)
\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9
c/
\(3A=3^2+3^3+3^4+...+3^{121}\)
\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)
\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương