3x+4=16
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
3x+2/4=16/3x+2 tìm x
\(\dfrac{3x+2}{4}=\dfrac{16}{3x+2}\)
`=> (3x+2)^2 =4.16`
`=> (3x+2)^2 = 64`
`=> (3x+2)^2 = +- 8^2`
\(\Rightarrow\left[{}\begin{matrix}3x+2=8\\3x+2=-8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=6\\3x=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Giải pt sau:
\(\sqrt{x^4+3x^2-4}+3x=\sqrt{3x^4+16}\)
\(\sqrt{x^4+3x^2-4}+3x=\sqrt{3x^4+16}\)
\(\Leftrightarrow\sqrt{3x^4+16}-\sqrt{x^4+3x^2-4}=3x\)
\(\Leftrightarrow4x^4+3x^2+12-2\sqrt{3x^4+16}.\sqrt{x^4+3x^2-4}=9x^2\)
Đặt \(x^2=a\ge0\)
\(\Leftrightarrow2a^2-3a+6=\sqrt{3a^2+16}.\sqrt{a^2+3a-4}\)
\(\Leftrightarrow\left(2a^2-3a+6\right)^2=\left(3a^2+16\right).\left(a^2+3a-4\right)\)
\(\Leftrightarrow\left(a^2+4\right)\left(a^2-21a^2+25\right)=0\)
( 3x+1)^2-2(3x+5)+(3x+5)^2
A. 8
B. 16
C. 24
D. 4
giải hộ mk vs
1/2x^4+3x^3-x^2+3x+2=0
2/x^4-5x^3+7x^2-5x-16=0
3/(x+2)^4+(x+4)^4=16
1) \(2x^4+3x^3-x^2+3x+2=0\)
\(\Rightarrow2x^4+x^3+2x^3+x^2-2x^2-x+4x+2=0\)
\(\Rightarrow x^3\left(2x+1\right)+x^2\left(2x+1\right)-x\left(2x+1\right)+2\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+x^2-x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+2x^2-x^2-2x+x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\right]=0\)
\(\Rightarrow\left(2x+1\right)\left(x+2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\x^2-x+1=0\end{matrix}\right.\)
Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x
\(\Rightarrow x^2-x+1\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)
3) \(\left(x+2\right)^4+\left(x+4\right)^4=16\)
Đặt x + 3 = a, ta được
\(\left(a-1\right)^4+\left(a+1\right)^4=16\)
\(\Rightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=16\)
\(\Rightarrow\left(a^2-2a+1\right)^2+\left(a^2+2a+1\right)^2=16\)
\(\Rightarrow a^4+4a^2+1+2a^2-4a^3-4a+a^4+4a^2+1+2a^2+4a^3+4a=16\)
\(\Rightarrow2a^4+2.4a^2+2+2.2a^2=16\)
\(\Rightarrow2a^4+8a^2+4a^2+2=16\)
\(\Rightarrow2a^4+12a^2+2-16=0\)
\(\Rightarrow2a^4+12a^2-14=0\)
\(\Rightarrow2a^4-2a^2+14a^2-14=0\)
\(\Rightarrow2a^2\left(a^2-1\right)+14\left(a^2-1\right)=0\)
\(\Rightarrow\left(a^2-1\right)\left(2a^2+14\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right).2\left(a^2+7\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+7=0\end{matrix}\right.\)
Vì \(a^2\ge0\) với mọi a
\(\Rightarrow a^2+7\ge7\) với mọi a
\(\Rightarrow a^2+7\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+3-1=0\\x+3+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
a) (2x-3)²=9
b) (x²-16)²-16(x-4)²=0
c) (2x/5-3/4)²-3x/5-1/4=0
d) 1/16(x-2)²=9/25(5/3x-5)²
căn(16-8x+3x^2)=x^2+3x-4
20-(3x+4):4=16
(3x + 4) : 4 = 20-16
(3x + 4) : 4 = 4
3x + 4 = 4 x 4
3x + 4 = 16
3x = 16- 4
3x = 12
x = 12 : 3
x = 4
(3x + 4) : 4 = 20-16
(3x + 4) : 4 = 4
3x + 4 = 4 x 4
3x + 4 = 16
3x = 16- 4
3x = 12
x = 12 : 3
x = 4
Xin lỗi bạn nhé, đây là đáp án đúng;
20 - ( 3x + 4 ) / 4 = 16
( 3x + 4 ) / 4 = 20 - 16
3x + 4 = 4 * 4
3x = 16 - 4
x = 12 / 3
x = 4
Tìm số nguyên x, biết:
1) -16 + 23 + x = - 16
2) 2x – 35 = 15
3) 3x + 17 = 12
4) (2x – 5) + 17 = 6
5) 10 – 2(4 – 3x) = -4
6) - 12 + 3(-x + 7) = -18
Tìm số nguyên x, biết:
1) -16 + 23 + x = - 16
7+x=-16
x=-16-7
x=-23
2) 2x – 35 = 15
2x=15+35
2x=50
x=50:2
x=25
3) 3x + 17 = 12
3x=12-17
3x=-5
x=-5/3
4) (2x – 5) + 17 = 6
2x-5=6-17
2x-5=-11
2x=-11+5
2x=-6
x=-6:2
x=-3
5) 10 – 2(4 – 3x) = -4
2(4-3x)=10-(-4)
2(4-3x)=14
4-3x=14:2
4-3x=7
3x=4-7
3x=-3
x=-3:3
x=-1
6) - 12 + 3(-x + 7) = -18
3(-x+7)=-18-(-12)
3(x+7)=-6
x+7=-6:3
x+7=-2
x=-2-7
x=-9
tự đi mà làm
`3x^4+2x^2=16`
Đặt `x^2=t (t >=0)` có:
`3t^2+2t=16`
`<=>3t^2+2t-16=0`
`<=>` \(\left[ \begin{array}{l}t=2(TM)\\t=\dfrac{-8}{3}(L)\end{array} \right.\)
Với `t=2` : `x^2=2 <=> x= \pm \sqrt2`
Vậy `S={\pm \sqrt2}`.
Ta có: \(3x^4+2x^2=16\)
\(\Leftrightarrow3x^4+2x^2-16=0\)
\(\Leftrightarrow3x^4+6x^2-8x^2-16=0\)
\(\Leftrightarrow3x^2\left(x^2+2\right)-8\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(3x^2-8\right)=0\)
mà \(x^2+2>0\forall x\)
nên \(3x^2-8=0\)
\(\Leftrightarrow3x^2=8\)
\(\Leftrightarrow x^2=\dfrac{8}{3}\)
\(\Leftrightarrow x\in\left\{\dfrac{2\sqrt{6}}{3};-\dfrac{2\sqrt{6}}{3}\right\}\)
Vậy: \(S=\left\{\dfrac{2\sqrt{6}}{3};-\dfrac{2\sqrt{6}}{3}\right\}\)