Cho \(M=\dfrac{3n+10}{n+3}\) tìm n thuốc Z để M có giá trị nguyên
Cho phân số M = 6n - 1 / 3n+2 (n thuộc Z)
a, tìm số nguyên n để M có giá trị nguyên
b, tìm số nguyên n để M có giÁ TRỊ NHỎ NHẤT . tìm giá trị nhỏ nhất đó
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Tìm giá trị nguyên của n để các phân số có giá trị nguyên.
A=\(\dfrac{3n+10}{n+3}\)
Ta có A= (3n +10)/(n+3)
= [ 3(n+3) +1 ] /(n+3)
= 3 + 1/(n+3)
Để A nguyên thì 1/(n+3) cũng phải nguyên
tức 1 phải chia hết cho n+3
=> n + 3 = 1 hoặc n + 3 = -1;
Trường hợp: n+3 = 1 => n = -2 khi đó A = 3 + 1 = 4
Trường hợp: n+3 = -1 => n = -4 khi đó A = 3 -1 = 2
Cho A=\(\dfrac{3n-5}{n+4}\) tìm n ϵ Z để A có giá trị nguyên
a) cho M=n-3 phần n-1 (n thuộc Z)
tìm n để M có giá trị nguyên
Tìm n để M có giá trị nhỏ nhất
b)cho N= 10.n phần 5n-1 ( n thuộc Z)
tìm n để N có giá trị nguyên
tìm n để N có giá trị lớn nhất
Cho phân số M = 6n - 1 / 3n+2 (n thuộc Z)
a, tìm số nguyên n để M có giá trị nguyên
b, tìm số nguyên n để M có giÁ TRỊ NHỎ NHẤT .
AI NHANH NHẤT, RÕ RÀNG MK TICK CHO.
cho phân số \(\dfrac{5}{3n-1}\) (n ∈ Z) tìm các giá trị của n để phân số đó có giá trị là một số nguyên
\(\dfrac{5}{3n-1}\in Z\Rightarrow3n-1=Ư\left(5\right)\)
\(\Rightarrow\left[{}\begin{matrix}3n-1=-5\\3n-1=-1\\3n-1=1\\3n-1=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=-\dfrac{4}{3}\left(ktm\right)\\n=0\\n=\dfrac{2}{3}\left(ktm\right)\\n=2\end{matrix}\right.\)
Vậy \(n=\left\{0;2\right\}\)
Cho phân số M=\(\frac{6n-1}{3n+2}\) n thuộc Z
a,Tìm số nguyên n để M có giá trị nguyên
b,tìm số tự nhiên n để M có giá trị nhỏ nhất.
M=(6n+4-5):(3n+2)=2-5:(3n+2)
a) để M nguyên thì (3n+2) phải là ước của 5
=> 3n+2={-5; -1; 1; 5}
+/ 3n+2=-5 => n=-7/3 (loại)
+/ 3n+2=-1 => n=-1; M=7
+/ 3n+2=1 => n=-1/3 loại
+/ 3n+2=5 => n=1; M=-3
Đs: n={-1; 1}
b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0
Mmin=2-5/2=-1/2
Cho phân số M = 6n - 1 / 3n+2 (n thuộc Z)
a, tìm số nguyên n để M có giá trị nguyên
b, tìm số nguyên n để M có giÁ TRỊ NHỎ NHẤT .
AI NHANH NHẤT MÀ GIẢI RÕ RÀNG NHẤT THÌ MK TICK CHO.
a) Để \(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\)là số nguyên .
=> \(\frac{5}{3n+2}\)là 1 số nguyên
=> 5 chia hết cho 3n+2 .
=> 3n+2 thuộc Ư(5)=\(\left\{\pm1;\pm5\right\}\)
Từ đó, ta lập bảng ( khúc này bn tự làm)
Vậy...
b) Để \(\frac{5}{3n+2}\)đạt giá trị lớn nhất:
=> 3n+2 đạt giá trị tự nhiên nhỏ nhất
=> 3n đạt giá trị tự nhiên nhỏ nhất
=> n là số tự nhiên nhỏ nhấ
<=> n = 0
cho phân số:M=6n-1/3n-2
a)Tìm n để phân số M là số nguyên (n thuộc Z)
b)Tìm n để M có giá trị nhỏ nhất (n thuộc Z)
Cho M=2/n-1, N=n+4/n, P=n/n-2, A=6n-1/3n+2. Tìm n € Z để M, N, P, A có giá trị nguyên