1) phan tich da thuc sau thanh nhan tu ;
a)\(x^2+x+1\)
phan tich da thuc sau thanh nhan tu: x5+x+1
\(x5+x-1 = x5-x4+x3+x4-x3+x2-x2+x-1 = x3(x2-x+1)+x2(x2-x+1)-(x2-x+1) = (x2-x+1)(x3+x2-1) \)
hc tốt nha !!!!!!!!!
phan tich da thuc sau thanh nhan tu (bang cach dat nhan tu chung)
(4x-y)(a+b)(4x-y)(c-1)
\((4x-y)(a+b)(4x-y)(c-1)\)
\(=\left(4x-y\right)\left(4x-y\right)=\left(4x-y\right)^{1+1}=\left(4y-2\right)^2\)
\(=\left(a+b\right)\left(4x-y\right)^2\left(c-1\right)\)
(4x-y)(a+b)(4x-y)(c-1)
= ( 4x - y ) ( 4x - y ) = ( 4x - y ) 1 + 1 = ( 4y - 2 ) 2
= (a + b ) ( 4x - y )2 ( c - 1 )
Bài giải :
(4x-y)(a+b)(4x-y)(c-1)
= ( 4x - y ) ( 4x - y ) = ( 4x - y ) 1 + 1
= ( 4y - 2 ) 2
= (a + b ) ( 4x - y )2 ( c - 1 )
Phan tich da thuc sau thanh nhan tu
6x^3+x^2+x+1
\(6x^3+x^2+x+1=\left(6x^3+3x^2\right)+\left(-2x^2-x\right)+\left(2x+1\right)\)
\(=3x^2.\left(2x+1\right)-x.\left(2x+1\right)+\left(2x+1\right)=\left(2x+1\right)\left(3x^2-x+1\right)\)
K sai dau
giao an truong Tran dai nghia do
phan tich cat da thuc sau thanh nhan tu
a) x^4 + 1 - 2x^2
\(x^4+2x^2+1=\left(x^2+1\right)^2\) (Nhớ k cho mình với nhé!)
phan tich da thuc sau thanh nhan tu (x-1)(x-3)(x-5)(x-7)-20
\(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20=\left[\left(x-1\right)\left(x-7\right)\right].\left[\left(x-3\right)\left(x-5\right)\right]-20\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
Đặt \(x^2-8x+11=t\) \(\Rightarrow\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20=\left(t-4\right)\left(t+4\right)-20=t^2-16-20=t^2-36=\left(t-6\right)\left(t+6\right)\)\(\Rightarrow\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20=\left(x^2-8x+11-6\right)\left(x^2-8x+11+6\right)=\left(x^2-8x+17\right)\left(x^2-8x+5\right)\)
Phan tich da thuc sau thanh nhan tu : (x+1)(x+2)(x+3)(x+4)-8
Gợi ý:
Nhóm:\(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-8\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)
Đặt \(t=x^2+5x+4\) thì biểu thức trở thành:
\(t\left(t+2\right)-8=t^2+2t-8=\left(t-2\right)\left(t+4\right)\)
Rồi bạn làm tiếp, nếu còn phân tích được thì phải phân tích, mình bận rồi.
(x + 1)(x + 2)(x + 3)(x + 4) - 8
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 8
= (x2 + 4x + x + 4)(x2 + 3x + 2x + 6) - 8
= (x2 + 5x + 4)(x2 + 5x + 6) - 8
Đặt x2 + 5x + 5 = t
⇒ (x2 + 5x + 5 - 1)(x2 + 5x + 5 + 1) - 8 (1)
Thay t = x2 + 5x + 5 vào (1), ta có:
(t - 1)(t + 1) - 8 = t2 - 1 - 8 = t2 - 9
= (t - 3)(t + 3)
⇔ (x2 + 5x + 5 - 3)(x2 + 5x + 5 + 3)
= (x2 + 5x + 2)(x2 + 5x + 8)
Chúc bạn học tốt !!!!!!!!
(x+1)(x+2)(x+3)(x+4)-8
= [(x+1)(x+4)][(x+2)(x+3)]-8
= (x2+4x+x+4)(x2+3x+2x+6)-8
= (x2+5x+5-1)(x2+5x+5+1)-8
= (x2+5x+5)2-12-8
= (x2+5x+5)2-9
= (x2+5x+5) -32
= (x2+5x+5-3)(x2+5x+5+3) {HĐT số 3}
= (x2+5x+2)(x2+5x+8)
phan tich da thuc sau thanh nhan tu
6x^3+x^2+x+1
phan tich da thuc sau thanh nhan tu : x^4 - 6x^3 + 54x - 81
\(x^4-6x^3+54x-81\)
\(=x^4+3x^3-9x^3+27x^2-27x^2 +81x-27x-81\)
\(=\left(x^4+3x^3\right)-\left(9x^3+27x^2\right)+\left(27x^2+81x\right)-\left(27+81\right)\)
\(=x^3\left(x+3\right)-9x^2\left(x+3\right)+27x\left(x+3\right)-27\left(x+3\right)\)
\(=\left(x+3\right)\left(x^3-9x^2+27x-27\right)\)
\(=\left(x+3\right)\left(x-3\right)^3\)
phan tich da thuc sau thanh nhan tu:
a)(x-y+4)^2-(2x+3y-1)^2
Đặt \(A=\left(x-y+4\right)^2-\left(3x+3y-1\right)^2\)
Ta có:
\(\left(x-y+4\right)^2=x^2-xy+4x-yx+y^2-4y+4x-4y+16\)
\(=x^2+y^2-2xy+8x-8y+16\)
\(\left(3x+3y-1\right)^2=9x^2+9xy-3x+9xy+9y^2-3y-3x-3y+1\)
\(=9x^2+9y^2-6x-6y+18xy+1\)
Mình làm đến đây bạn trừ 2 kết quả cho nhau rồi sẽ ra
2.phan tich da thuc sau thanh nhan tu: (x4+x+1)4+1