Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Monkey  D  Dragon
Xem chi tiết
Cô Pê
Xem chi tiết
nguyễn thị kim oanh
Xem chi tiết
HD Film
23 tháng 7 2020 lúc 11:07

Ta có:

+) \(\left(2n^2+n+2\right)^2=4n^4+4n^3+9n^2+4n+4>4n^4+4n^3+6n^2+3n+2\)

     Giải thích: \(3n^2+n+2>0\forall n\inℤ\)

+)\(4n^4+4n^3+6n^2+3n+2>4n^4+4n^3+5n^2+2n+1=\left(2n^2+n+1\right)^2\)

     Giải thích: \(n^2+n+1>0\forall n\inℤ\)

Ta thấy \(4n^4+4n^3+6n^2+3n+2\)bị kẹp giữa 2 số chính phương liên tiếp nên không thể là số chính phương

Khách vãng lai đã xóa
nguyễn thị kim oanh
24 tháng 7 2020 lúc 20:06

làm sao bạn tìm ra hai bình phương kẹp A ở giữa thế bạn, chỉ mik với?

Khách vãng lai đã xóa
Bạn Của Nguyễn Liêu Hóa
Xem chi tiết
Hà Xuân Sơn
Xem chi tiết
Hày Cưi
Xem chi tiết
Trần Trung Nguyên
30 tháng 11 2018 lúc 20:26

Giả sử \(4n^4+4n^3+6n^2+3n+2\) là một số chính phương

Đặt A2=\(4n^4+4n^3+6n^2+3n+2\)

Ta có \(A^2=4n^4+4n^3+6n^2+3n+2=\left(4n^4+4n^3+5n^2+2n+1\right)+\left(n^2+n+1\right)=\left(4n^4+n^2+1+4n^3+4n^2+2n\right)+\left(n^2+n+1\right)=\left(2n^2+n+1\right)^2+\left(n^2+n+1\right)\)

Ta có \(n^2+n+1>0\)

Vậy \(A^2>\left(2n^2+n+1\right)^2\Leftrightarrow A>2n^2+n+1\left(1\right)\)

Ta có \(A^2=4n^4+4n^3+6n^2+3n+2=\left(4n^4+4n^3+9n^2+4n+4\right)-\left(3n^2+n+2\right)=\left(4n^4+n^2+4+4n^3+8n^2+4n\right)-\left(3n^2+n+2\right)=\left(2n^2+n+2\right)^2-\left(3n^2+n+2\right)\)

Ta có \(3n^2+n+2>0\)

Vậy \(A^2< \left(2n^2+n+1\right)^2\Leftrightarrow A< 2n^2+n+1\left(2\right)\)

Từ (1),(2)\(\Leftrightarrow2n^2+n+1< A< 2n^2+n+2\)(vô lý với n\(\in Z\))

Vậy trái với giả sử

Vậy \(4n^4+4n^3+6n^2+3n+2\) không là số chính phương với \(n\in Z\)

Nguyễn Trung Hiếu
Xem chi tiết
Nguyễn Dương Ngọc Minh
Xem chi tiết
Hà Duy Trịnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 20:01

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau