tính giá trị của đa thức M= 2x mũ 4 +3x mũ 2 y mũ 2 + y mũ 4+ y mũ 2 tại x mũ 2+y mũ 2=1
A = 16 x mũ 4 - 8x mũ 3 y + 7x mũ 2 y mũ 2 - 9y mũ 4
B = -15 x mũ 4 + 3x mũ 3 y - x mũ 2 y mũ 2 - 6y mũ 4
C = 5x mũ 3 y + 3x mũ 2 y mũ 2 + 17 y mũ 4 + 1
Chứng minh rằng ít nhất 1 trong 3 đa thức này có giá trị dương với mọi x , y
tính giá trị biểu thức sau
a, 21( x + 3) mũ 3 : ( 3x + 9 ) mũ 2 tại x = - 6
b, ( 2x mũ 2 - 5x + 3 ) mũ 4 : [( 2x - 3 ) mũ 3 . ( x - 1 ) mũ 2 ] tại x = 2; y = 3
c, 36x mũ 4 y mũ 3 : ( - 6 x mũ 3y mũ 2 ) tại x = 10 , y = 7
\(a)\)
\(21\left(x+3\right)^3:\left(3x+9\right)^2\)
\(=[21\left(x+3\right)^3]:[3^2\left(x+3\right)^2]\)
\(=7\left(x+3\right):3\)
Thay vào ta được: \(7.\frac{\left(-6+3\right)}{3}=7.\left(-3\right):3=-7\)
\(b)\)
Thay vào ta được:
\(\left(2.2^2-5.2+3\right)^4:[\left(2.2-3\right)^3:\left(2-1\right)^2]\)
\(=\left(2.4-10+3\right)^4:[\left(4-3\right)^31^2]\)
\(=1^4:\left(1^3.1\right)\)
\(=1:1\)
\(=1\)
\(c)\)
Thay vào ta được:
\(36.10^4.7^3:\left(-6.10^3.7^2\right)\)
\(=-6.10.7\)
\(=-420\)
.Kết quả thu gọn của đa thức 4x mũ 3 y mũ 2 - 5x - 3x mũ 3 y mũ 2 + 5x - 7 là
.Giá trị của đa thức M = 3 xy mũ 2 + xz tại x = 1 ; y = -1 ; z = 2 là
.Tổng của hai đa thức M = 3xy mũ 2 + xz và N = 5xy mũ 2 - xz là
.Cho hai đa thức E = 4x mũ 2 y mũ 3 + 3x + 5 và F = 5x mũ 2 y mũ 3 - 2x . Hiệu E - F là
.Biết Q + ( 4x mũ 2 y mũ 3 + 3x + 5 ) = 5x mũ 2 + y mũ 3 - 2x + 5 . Đa thức Q là
.Đa thức P(x) = 2x - 6 có nghiệm là
.Đa thức Q(x) = x mũ 3 + 4x + m . có một nghiệm x= -2 . Khi đó m là
cho đơn thức : A = [ - 2/3x mũ 2 y] . [ -3/5x mũ 2 y mũ 3]. a, thu gọn đơn thức A . b, tính giá trị của đơn thức A tại x = -1, y = 2 . c, cho B = A - x mũ 4 y mũ 4 - 3 . CMR B luôn âm với mọi giá trị của x , y
a, \(A=\left(-\dfrac{2}{3}x^2y\right)\left(-\dfrac{3}{5}x^2y^3\right)=\dfrac{2}{5}x^4y^4\)
b,Thay x = -1 ; y = 2 ta được \(\dfrac{2^5}{5}=\dfrac{32}{5}\)
c, \(B=\dfrac{2}{5}x^4y^4-x^4y^4-3=-\dfrac{3}{5}x^4y^3-3< 0\)
Vậy B luôn nhận gtr âm
M = 2 x mũ 2 * y mũ 4 + 4xyz - 2x mũ 2 - 5 + 3x mũ 2 y mũ 4 - 4xyz + + - y mũ 9 . Hãy thu gọn đa thức sau và xác định bậc của đa thức
tính giá trị của các biểu thức sau tại | x | = 1/2 , |y| = 1
a) A = 2x mũ 2 - 3x + 5
b) 2x mũ 2 - 3xy + y mũ 2
a: Trường hợp 1: x=1/2
\(A=2\cdot\dfrac{1}{4}-3\cdot\dfrac{1}{2}+5=\dfrac{1}{2}-\dfrac{3}{2}+5=3\)
Trường hợp 2: x=-1/2
\(A=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}+5=\dfrac{1}{2}+\dfrac{3}{2}+5=2+5=7\)
b: Trường hợp 1: x=1/2; y=1
\(B=2\cdot\left(\dfrac{1}{2}\right)^2-3\cdot\dfrac{1}{2}\cdot1+1^2=\dfrac{1}{2}-\dfrac{3}{2}+1=-1+1=0\)
Trường hợp 2: x=1/2; y=-1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{1}{2}\cdot\left(-1\right)+1=3\)
Trường hợp 3: x=-1/2; y=1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}\cdot1+1=\dfrac{1}{2}+\dfrac{3}{2}+1=3\)
Trường hợp 4: x=-1/2; y=-1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}\cdot\left(-1\right)+1=\dfrac{1}{2}-\dfrac{3}{2}+1=0\)
1, viết đơn thức sau dưới dạng tổng của hai đơn thức trong đó có một đơn thức bằng 2x mũ 2 y mũ 3
A)5x mũ 2 y mũ 3
B)-6 x mũ 2 y mũ 3
C) m x mũ 2 y mũ 3 ( m là hằng số)
2) cho đa thức A(x)3 x mũ 2 + 5 x mũ 3 cộng x trừ 2 x mũ 2 trừ x mũ 3 cộng 1 trừ 4 x mũ 3 trừ 2X - 3
a) thu gọn đa thức
b) tìm x để giá trị của đa thức A(x) bằng giá trị của đa thức B(x) =2 x- 2
viết bằng công thức ở chỗ \(\sum\) đi bạn
1. rút gọn
P= (a mũ 2 -1 ) 1 mũ 2 - a +1 ) ( a2 +a +1)
4. tính giá trị biểu thức
P= ( 2x -1) ( 4x mũ 2 + 2x +1)-4x (2x mũ 2 -3) với x= 1/2
5 cho x + y = 1 và xy = -1
tính x mũ 3+ y mũ 3
6. cho x+ y=1 tìm giá trị biểu thức
P= 2 ( x mũ 3 + y mũ 3) -3 ( x mũ 2 + y mũ 2 )
7.tìm x biết
5x-(4 -3x +x mũ 2) ( x +2 ) +x ( x-1) (x+) =0
8. tìm x biết
(4x mũ 2 + 2x +4 ) (2x-1) -4x ( 2x mũ 2 -3)= 23
mng giúp em với, mai em nộp bài rồi
em cảm ơn trước ạ
Phân tích cách đa thức sau thành nhân tử
a. x mũ 2 y - 8x + xy - 8
b. x mũ 2 + 6xy + 9y mũ 2 - 9
Chứng minh giá trị của biểu thức k phụ thuộc vào giá của biến x và y
A=3x mũ 2 ( 2x mũ 2 - 7x trừ 2) - 6x mũ 2 (x mũ 2 - 4x - 1) - 3x mũ 3 + 15
Làm phép chia
( 6x mũ 3 - 7x mũ 2 + 2) : (2x + 1)
\(a,x^2y-8x+xy-8=xy\left(x+1\right)-8\left(x+1\right)=\left(xy-8\right)\left(x+1\right)\\ b,=\left(x+3y\right)^2-9=\left(x+3y-3\right)\left(x+3y+3\right)\)
\(A=3x^2\left(2x^2-7x-2\right)-6x^2\left(x^2-4x-1\right)-3x^3+15\\ A=6x^4-21x^3-6x^2-6x^4+24x^3+6x^2-3x^3+15\\ A=15\left(đpcm\right)\)
\(Sửa:\left(6x^3-7x^2+2x\right):\left(2x+1\right)\\ =\left(6x^3+3x^2-10x^2-5x\right):\left(2x+1\right)\\ =\left[3x^2\left(2x+1\right)-5x\left(2x+1\right)\right]:\left(2x+1\right)\\ =3x^2-5x\)