Cho một hình chữ nhật. Vẽ tứ giác có các đỉnh là trung điểm các cạnh của hình chữ nhật. Vì sao tứ giác này là một hình thoi ? So sánh diện tích hình thoi và diện tích hình chữ nhật, từ đó suy ra cách tính diện tích hình thoi.
Cho một hình chữ nhật. Vẽ tứ giác có các đỉnh là trung điểm các cạnh của hình chữ nhật. Vì sao tứ giác này là một hình thoi ? So sánh diện tích hình thoi và diện tích hình chữ nhật, từ đó suy ra cách tính diện tích hình thoi.
Cho hình chữ nhật ABCD; M,N,P,Q lần lượt là trung điểm của AB,BC, CD, DA.
* Chứng minh MNPQ là hình thoi
Ta có MN = PQ = 1/2BD
NP = MQ = 1/2 AC
Mà AC = BD
⇒ MN = NP = PQ = QM nên tứ giác MNPQ là hình thoi (Có 4 cạnh bằng nhau)
* Theo bài 33 (các em tham khảo ở trên), ta có SMNPQ = SABNQ và SMNPQ = SNQDC
Vì vậy SABCD = SABNQ + SNQDC = 2SMNPQ
* Ta có SABCD =2SMNPQ ⇒ SMNPQ = 1/2SABCD = 1/2AB.BC = 1/2NQ.MP
Vẽ hình chữ nhật ABCD với các trung điểm các cạnh M, N, P, Q.
Vẽ tứ giác MNPQ
Ta có MN = PQ = \(\dfrac{1}{2}\)BD
NP = MQ = \(\dfrac{1}{2}\) AC
Mà AC = BD
Nên tứ giác MNPQ là hình thoi vì có bốn cạnh bằng nhau.
Dễ dàng chứng minh rằng : ∆AMN = ∆INM , ∆BPN = ∆NIP
∆PCQ = ∆IQP, ∆DMQ = IQM
Do đó
SMNPQ = \(\dfrac{1}{2}\) SABCD mà SABCD = AB. AD = MP. NQ
Vậy SMNPQ = \(\dfrac{1}{2}\) MP.NQ
Cho một hình chữ nhật. Vẽ tứ giác có các đỉnh là trung điểm các cạnh của hình chữ nhật. Vì sao tứ giác này là một hình thoi? So sánh diện tích hình chữ nhật, từ đó suy ra cách tính diện tích hình thoi.
Vẽ hình chữ nhật ABCD với các trung điểm các cạnh là M, N, P, Q.
Vẽ tứ giác MNPQ
Lại có: ABCD là hình chữ nhật nên AC = BD (3)
Từ (1), (2) và (3) suy ra: MN = PQ = MQ = NP
=> Tứ giác MNPQ là hình thoi.
+ Ta có:
∆ BMN = ∆ IMN; ∆ INP = ∆ CNP, ∆ AMQ= ∆IMQ, ∆ DPQ= ∆IPQ
Như vậy diện tích hình thoi bằng nửa tích hai đường chéo.
a) Vẽ hình chữ nhật ABCD có chiều dài 5cm, chiều rộng 4cm .
Nối trung điểm M của AD với trung điểm N của cạnh BC ta được các hình tứ giác đều là hình chữ nhật.
b) – Các hình chữ nhật có trong hình bên là:
…………………………
- Các cạnh song song với cạnh AB là:
……………………………
a) Vẽ hình chữ nhật ABCD có chiều dài 5cm, chiều rộng 4cm .
Nối trung điểm M của AD với trung điểm N của cạnh BC ta được các hình tứ giác đều là hình chữ nhật.
b) – Các hình chữ nhật có trong hình bên là:
Hình chữ nhật ABCD, ABNM, MNCD.
- Các cạnh song song với cạnh AB là:
Các cạnh MN và DC.
a) Hãy vẽ hình chữ nhật ABCD có chiều dài AB = 6cm, chiều rộng AD = 4cm.
b) Xác định trung điểm M của cạnh AD, trung điểm N của cạnh BC. Nối điểm M và điểm N ta được các hình tứ giác đều hình chữ nhật
- Nêu tên các hình chữ nhật đó.
- Nêu tên các cạnh song song với cạnh AB
a) Học sinh vẽ hình chữ nhật ABCD
b) Trên cạnh AD lấy điểm M sao cho: AM = 4 : 2 = 2 (cm)
Trên cạnh BC lấy điểm N sao cho: BN = 2cm
M và N là trung điểm của AD và BC
- Các hình chữ nhật có ở hình bên là: ABNM, MNCD, ABCD
- Các cạnh song song với cạnh AB là: MN, DC
a) Hãy vẽ hình chữ nhật ABCD có chiều dài AB = 6cm, chiều rộng AD = 4cm.
b) Xác định trung điểm M của cạnh AD, trung điểm N của cạnh BC. Nối điểm M và điểm N ta được các hình tứ giác đều là hình chữ nhật.
- Nêu tên các hình chữ nhật đó
- Nêu tên các cạnh song song với cạnh AB.
Hãy vẽ hình chữ nhật ABCD có chiều dài AB = 6cm, chiều rộng AD = 4cm.
Xác định trung điểm M của cạnh AD, trung điểm N của cạnh BC. Nối điểm M và điểm N ta được các hình tứ giác đều hình chữ nhật
- Nêu tên các hình chữ nhật đó.
- Nêu tên các cạnh song song với cạnh AB
Học sinh vẽ hình chữ nhật ABCD
Trên cạnh AD lấy điểm M sao cho: AM = 4 : 2 = 2 (cm)
Trên cạnh BC lấy điểm N sao cho: BN = 2cm
M và N là trung điểm của AD và BC
- Các hình chữ nhật có ở hình bên là: ABNM, MNCD, ABCD
- Các cạnh song song với cạnh AB là: MN, DC
1. Cho hình chữ nhật có chu vi nhở hơn \(2\sqrt{2}\) và 1 tứ giác có các đỉnh nằm trên các cạnh khác nhau của hình chữ nhật đó. Chứng minh chu vi của tứ giác đó không nhỏ hơn 2
2. Cho tam giác ABC có diện tích S độ dài các cạnh a,b,c. Kẻ dường cao AH. Chứng minh rằng: \(S\)≤ \(\dfrac{1}{16}\left(3a^2+2b^2+2c^2\right)\)
3. Cho tam giác ABC vuông cân tại A. M là 1 điểm thay đổi trên BC, hạ MH⊥AB, MK⊥AC (H∈AB, K∈AC). Tìm max \(\left\{MH^4+MK^4\right\}\)
Cho hình chữ nhật ABCD có chiều dài 12cm, chiều rộng 5cm. Nối đỉnh A với trung điểm N của cạnh DC. Nối đỉnh C với trung điểm M của cạnh AB. Cho biết hình tứ giác AMCN là hình bình hành có chiều cao MN bằng chiều rộng của hình chữ nhật.
a) Giair thích tại sao đoạn thẳng AN và MC song song và bằng nhau
b)Diện tích hình chữ nhật ABCD gấp mấy lần diện tích hình bình hành AMCN.
Đố các bạn giải được đấy, cố lên nhé!@@@@
bài này mik lam rùi mik làm cũng đc nhưng bây giờ muộn rồi mik phải đi ngủ mai mik làm
Cho hình chữ nhật ABCD có chiều dài 12 cm, chiều rộng 5 cm. Nối đỉnh A với trung điểm N của cạnh DC. Nối đỉnh C với trung điểm M của cạnh AB. Cho biết hình tứ giác AMCN là hình bình hành có chiều cao MN bằng chiều rộng của hình chữ nhật.
a) Giải thích tại sao AN và Mc song song và bằng nhau.
b) Diện tích hình chữ nhật ABCD gấp mấy lần diện tích hình bình hành AMCN?
a) Hai đoạn thẳng AN và MC song song và bằng nhau vì chúng là hai cạnh đối diện của hình bình hành AMCN.
b) Diện tích hình chữ nhật ABCD là:
12 × 5 = 60 ( c m 2 )
Vì N là trung điểm của DC nên NC dài :
12 ∶ 6 = 6 cm
Diện tích hình bình hành AMCN là :
6 × 5 = 30( c m 2 )
So với diện tích hình bình hành AMCN thì diện tích hình chữ nhật ABCD gấp: 60 : 20 = 2 lần
Nói thêm : Có thể giải câu b gấp đôi đồ dài đáy hình bình hành.
Chiều rộng hình chữ nhật ABCD gắp đôi bộ dài đáy hình bình hành.
Chiều rộng hình chữ nhật ABCD bằng chiều cao hình bình hành.
Vậy diện tích hình chữ nhật gập đôi diện tích hình bình hành.
Cách 3 :
Đường gấp khúc AMNC chia hình chữ nhật ABCD thành 4 tam giác (vuông) bằng nhau. Hình bình hành AMNC gồm 2 tam giác ấy. Vậy diện tích hình chữ nhật ABCD gấp đôi diện tích hình bình hành AMCN.
Cho hình chữ nhật ABCD có chiều dài 12 cm, chiều rộng 5 cm. Nối đỉnh A với trung điểm N của cạnh DC. Nối đỉnh C với trung điểm M của cạnh AB. Cho biết hình tứ giác AMCN là hình bình hành có chiều cao MN bằng chiều rộng của hình chữ nhật.
a) Giải thích tại sao AN và Mc song song và bằng nhau.
b) Diện tích hình chữ nhật ABCD gấp mấy lần diện tích hình bình hành AMCN ?
a) Hai đoạn thẳng AN và MC song song và bằng nhau vì chúng là hai cạnh đối diện của hình bình hành AMCN.
b) Diện tích hình chữ nhật ABCD là:
12 × 5 = 60 (cm2)
Vì N là trung điểm của DC nên NC dài :
12 ∶ 2 = 6 cm
Diện tích hình bình hành AMCN là :
6 × 5 = 30(cm2)
So với diện tích hình bình hành AMCN thì diện tích hình chữ nhật ABCD gấp : 60 : 20 = 2 lần
Nói thêm : Có thể giải câu b gấp đôi đồ dài đáy hình bình hành.
Chiều rộng hình chữ nhật ABCD gắp đôi bộ dài đáy hình bình hành.
Chiều rộng hình chữ nhật ABCD bằng chiều cao hình bình hành.
Vậy diện tích hình chữ nhật gập đôi diện tích hình bình hành.
Cách 3 :
Đường gấp khúc AMNC chia hình chữ nhật ABCD thành 4 tam giác ( vuông) bằng nhau. Hình bình hành AMNC gồm 2 tam giác ấy. Vậy diện tích hình chữ nhật ABCD gấp đôi diện tích hình bình hành AMCN.