Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
GOD_Shine
Xem chi tiết
Hà Linh Nguyễn
Xem chi tiết
Xem chi tiết

          \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)

          \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

   \(\dfrac{a}{c}\)  =  \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\dfrac{a}{c}\) =   \(\dfrac{5a+3b}{5c+3d}\) (1) 

       \(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\)  (2)

Kết hợp (1) và (2) ta có:

       \(\dfrac{5a+3b}{5c+3d}\) =  \(\dfrac{5a-3b}{5c-3d}\) 

⇒   \(\dfrac{5a+3b}{5a-3b}\) =  \(\dfrac{5c+3d}{5c-3d}\) (đpcm)

 

   

      

 

 

   

 

b;   \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) 

      \(\dfrac{a}{b}\) =  \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     \(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)

 

      

 

GOD_Shine
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2023 lúc 19:13

(a+b+c+d)(a+d-b-c)=(a-b+c-d)(a+b-c-d)

=>(a+d)^2-(b+c)^2=(a-d)^2-(b-c)^2

=>(a+d)^2-(a-d)^2=(b+c)^2-(b-c)^2

=>(a+d-a+d)(a+d+a-d)=(b+c+b-c)(b+c-b+c)

=>4ad=4bc

=>ad=bc

=>a/c=b/d

Trần Đình Hòa
Xem chi tiết
Nguyễn  Khắc Kiệt
Xem chi tiết

a,

b,  a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d) 
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d

Nguyễn Tấn Phát
24 tháng 6 2019 lúc 13:56

Vì \(b,d>0\)nên \(bd>0\)

Ta có:  \(\frac{a}{b}< \frac{c}{d}\)

\(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)

\(\Leftrightarrow ad< bc\)vì \(bd>0\)

Vũ Đình Thái Dương
11 tháng 4 2020 lúc 8:02

Iam sorry 

Khách vãng lai đã xóa
nguyen hong thai
Xem chi tiết
Trần Tuấn Anh
Xem chi tiết
xKraken
11 tháng 6 2019 lúc 11:04

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< cb\) (1)

Ta quy đồng hai PS a/b và a+c/b+d để so sánh:

\(\frac{a}{b}...\frac{a+c}{b+d}\)

\(\Leftrightarrow a\left(b+d\right)....b\left(a+c\right)\)

\(\Leftrightarrow ab+ad.....ab+cb\)

\(\Leftrightarrow ad....cb\)

Vì (1) => \(ad< cb\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(2\right)\)

Quy đồng PS a+c/b+d và c/d để so sánh ta được:

\(\frac{a+c}{b+d}....\frac{c}{d}\)

\(\Leftrightarrow\left(a+c\right)d....\left(b+d\right)c\)

\(\Leftrightarrow ad+cd....+bc+cd\)

\(\Leftrightarrow ad...bc\)

Vì (1)

\(\Rightarrow ad< bc\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(3\right)\)

Từ (2) và (3) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)

Chúc bạn học tốt !!!

Tuấn Nguyễn
11 tháng 6 2019 lúc 15:47

Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< cb\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(d+b\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{d+b}\left(1\right)\)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< cb\)

\(\Rightarrow ad+cd< cb+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Nguyễn Ngọc Lan Anh
Xem chi tiết
ST
15 tháng 6 2017 lúc 16:32

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ad+ab< bc+ab\Leftrightarrow a\left(d+b\right)< b\left(c+a\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)(2)

Từ (1) và (2) suy ra điều phải chứng minh