(a+b+c+d)(a+d-b-c)=(a-b+c-d)(a+b-c-d)
=>(a+d)^2-(b+c)^2=(a-d)^2-(b-c)^2
=>(a+d)^2-(a-d)^2=(b+c)^2-(b-c)^2
=>(a+d-a+d)(a+d+a-d)=(b+c+b-c)(b+c-b+c)
=>4ad=4bc
=>ad=bc
=>a/c=b/d
(a+b+c+d)(a+d-b-c)=(a-b+c-d)(a+b-c-d)
=>(a+d)^2-(b+c)^2=(a-d)^2-(b-c)^2
=>(a+d)^2-(a-d)^2=(b+c)^2-(b-c)^2
=>(a+d-a+d)(a+d+a-d)=(b+c+b-c)(b+c-b+c)
=>4ad=4bc
=>ad=bc
=>a/c=b/d
cho a/b, c/d với a,b,c,d thuộc Z, b,d >0
CMR:
a , nếu a/b <c/d thì ad<bc
b,nếu a/b < c/d thì a/b < a+c/b+d<c/d
CMR: nếu (a+b+c+d).(a-b-c+d)=(a-b+c-d).(a+b-c-d) thì a/c= b/d
cmr nếu a+c=2b và 2*b*d=c*(b+d) thì a/b=c/d với b,d khác 0
Cmr nếu có
(a+b+c+d).(a-b-c+d)=(a-b+c-d).(a+b-c-d) thì a/b=c/d
Cho số 2 hữu tỉ a/b và c/d với b > 0 ; d > 0 cmr nếu: a/b < c/d thì a/b < a+c/b+d < c/d.
cmr a,nếu a/b=c/d thì a+b/b+c=c+d/d
CMR : Nếu (a + b + c + d )(a - b - c + d ) = ( a - b + c - d ) ( a + b - c - d ) thì a / c = b / d
CMR: Nếu a+c=2b và 2bd=c(b+d)(với b khác 0; d khác 0) thì a/b=c/d
CMR nếu: (x + y - c - d)(a - b - c - d) = (a+b - c - d)(a-b+c+d) thì \(\frac{a+b}{a-b}=\frac{c-d}{c+d}\)