BÀi 12 Sách bài tập toán 9.
Tìm x để căn thức sau có nghĩa
a) \(\sqrt{\frac{2}{x^2}}\)
b)\(\sqrt{\frac{4}{x+3}}\)
c) \(\sqrt{\frac{-5}{x^2+6}}\)
1)Tìm x để căn thức sau có nghĩa
a)\(\sqrt{2x-4}\) b)\(\sqrt{\dfrac{-7}{4-x}}\)
2) Tính
A=\(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}
\)
B=\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
Helpppp
1)
a) \(\sqrt{2x-4}\) có nghĩa khi:
\(2x-4\ge0\)
\(\Leftrightarrow2x\ge4\)
\(\Leftrightarrow x\ge\dfrac{4}{2}\)
\(\Leftrightarrow x\ge2\)
b) \(\sqrt{\dfrac{-7}{4-x}}\) có nghĩa khi
\(\dfrac{-7}{4-x}\ge0\) mà \(-7< 0\)
\(\Rightarrow4-x\le0\)
\(\Leftrightarrow x\ge4\)
2)
a) \(A=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(A=\sqrt{\left(\sqrt{5}\right)^2+2\cdot2\sqrt{5}+2^2}-\sqrt{\left(\sqrt{5}\right)^2-2\cdot2\cdot\sqrt{5}+2^2}\)
\(A=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(A=\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\)
\(A=\sqrt{5}+2-\sqrt{5}+2\)
\(A=4\)
\(B=\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-5}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{5}-\sqrt{7}}\)
\(B=\left(-\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}-\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(B=\left[-\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right]\cdot\left(\sqrt{7}-\sqrt{5}\right)\)
\(B=\left(-\sqrt{7}-\sqrt{5}\right)\cdot\left(\sqrt{7}+\sqrt{5}\right)\)
\(B=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
\(B=-\left(7-5\right)\)
\(B=-2\)
Bài 1: Tìm điều kiện để các phân thức sau có nghĩa
a)\(\frac{x-1}{x+1}b)\frac{2x+1}{-3x+5}c)\frac{3x-1}{x^2-4}d)\frac{x-1}{x^2+4}e)\frac{x-1}{\left(x-2\right)\left(x+3\right)}g)\frac{x-1}{x+2}:\frac{x}{x+1}\)
Bài 2 :Tìm điều kiện để các căn thức sau có nghĩa:\(1)\sqrt{3x}|2)\sqrt{-x}|3)\sqrt{3x+2}|4)\sqrt{5-2x}|5)\sqrt{x^2}|6)\sqrt{-4x^2}|7)\sqrt{x-3}+\sqrt{2x+2}|8)\sqrt{\frac{-3}{x+2}}|9)\frac{3}{2x-4}\)
Tìm x để các căn thức sau có nghĩa
a) \(\sqrt{-x-8}\)
b) \(\sqrt{\dfrac{1}{x^2-2x+1}}\)
c) \(\dfrac{\sqrt{x-2}}{5-x}\)
d) \(\sqrt{x^2+3}\)
a) ĐKXĐ: \(-x-8\ge0\Leftrightarrow x\le-8\)
b) ĐKXĐ: \(x^2-2x+1>0\Leftrightarrow\left(x-1\right)^2>0\Leftrightarrow x\ne1\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\5-x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)
d) ĐKXĐ: \(x^2+3\ge0\left(đúng.do.x^2+3\ge3>0\right)\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Bài 1: Tìm x để biểu thức có nghĩa
a) \(\dfrac{-5}{\sqrt{10x+2}}\) d)\(\sqrt{\dfrac{3-12x}{-4}}\)
b) \(\sqrt{\dfrac{-5}{10x+2}}\) e)\(\sqrt{x^2+1}\)
c)\(\sqrt{\dfrac{8-4x}{10}}\) f) \(^{\dfrac{10}{\sqrt{2020-2021}}}\)
g) \(\sqrt{\dfrac{2x-8}{x^2+1}}\)
Giúp mk vs, sắp pk nộp r :<<
Thanks ạ
Bài Toán :
Cho P = \(\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a) Rút gọn P
b) Tìm x để P > 0
c) Tìm Min của Q = P.(x + 1)
\(a,P=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(=\left(1-\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(1-\frac{\sqrt{x}}{\sqrt{x}+3}\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}:\left(\frac{3-\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{3}{\sqrt{x}+3}:\frac{2-\sqrt{x}}{\sqrt{x}+3}\)
\(=\frac{3}{2-\sqrt{x}}\)
b, Để P > 0 thì \(2-\sqrt{x}>0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\)(Thỏa mãn DKXD)
\(c,Q=P\left(x+1\right)=\frac{3\left(x+1\right)}{2-\sqrt{x}}\)
Ko biết e đã học miền giá trị chưa nhỉ ???
Giúp mình làm bài này với
Bài 1: Tính
A=\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
B=\(\frac{\sqrt{2+\sqrt{3}}}{2}\div\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
C=\(\frac{1}{\sqrt{2}+2}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{99\sqrt{100}+100\sqrt{99}}\)
Bài 2: Giải phương trình:
a. \(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}\sqrt{9x-45}=4\)
b.\(\frac{2\sqrt{x}-7}{3}=\sqrt{x}-1\)
c.\(5\sqrt{x-1}-\sqrt{36x-36}-\sqrt{9x-9}=\sqrt{8x+12}\)
Bài 3: Rút gọn
\(M=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\times\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a-1}}\right)\)
a. Tìm a để M>0
b. Tìm a để M<0
ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP
1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\) (căn 7 - căn căn 2 ) (1đ)
2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)
3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)
4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)
5. Cho biểu thức: (2,5đ)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)với x >0, x khác 1
Hãy tìm x để A có nghĩa rồi:
a/ Rút gọn A
b/ Tìm x biết A =-1
6. Giai phương trình \(\sqrt{16x-32}-\sqrt{4x-8}+\sqrt{9x-18}=1\)(0,5đ)
7. Giai phương trình \(\sqrt{x^2+2x+6}=x+2\)(0,5đ)
8. Thực hiện phép tính: \(B=\sqrt{5}\left(1-\sqrt{5}\right)+\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}\)(0,5đ)
9. Rút gọn biểu thức E = \(\sqrt{\frac{b}{a}}+ab\sqrt{\frac{1}{ab}}-\frac{b}{a}.\sqrt{\frac{a}{b}}\)(0,5đ)
10. Giai phương trình sau: \(\sqrt{4x-12}-\sqrt{25x-75}-\sqrt{x-3}=4-\sqrt{16x-48}\)(0,5đ)
11. Cho biểu thức: \(F=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)với a >0, a khác 1
a/ Rút gọn F
b/ Tìm giá trị của a để trị F = -F
Đề kiểm tra 1 tiết Đại số 9 chương 1 – Đề số 1
Bài 1 (2.5 điểm)
1) Nêu điều kiện để √a có nghĩa ? \(\sqrt{a}\) có nghĩa (0.5)
2) Áp dụng: Tìm x để các căn thức sau có nghĩa: ( 2 )
a) \(\sqrt{2x+6}\)
b) \(\sqrt{\frac{-2}{2x-3}}\)
Bài 2: ( 3 điểm ): Rút gọn biểu thức:
a) \(\sqrt{\left(1+2\sqrt{3}\right)^2}-5\sqrt{3}\)(1)
b) \(3\sqrt{2}+4\sqrt{8}-\sqrt{18}\)(1)
c) \(\frac{1}{3+\sqrt{2}}+\frac{1}{3-\sqrt{2}}\)(1)
Bài 3 ( 4.5 điểm ) Cho biểu thức
\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
đkxđ : \(x>0;x\ne4;x\ne1\)
a/ Rút gọn P. (1.5)
b/ Với giá trị nào của x thì P có giá trị bằng 1/4 (1.5)
c/ Tính giá trị của P tại x = 4 + 2√3 (1)
d/ Tìm số nguyên x để biểu thức P có giá trị là số nguyên ? (0.5)
Bài 1:
1. \(\sqrt{a}\)có nghĩa <=> \(a\ge0\)
2. a) \(\sqrt{2x+6}\)có nghĩa <=> \(2x+6\ge0\)
\(\Leftrightarrow2x\ge-6\)
\(x\ge-3\)
b)\(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow\frac{-2}{2x-3}\ge0\)
có -2 < 0
\(\Leftrightarrow\hept{\begin{cases}2x-3\ne0\\2x-3\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\ne3\\2x\le3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\frac{3}{2}\\x\le\frac{3}{2}\end{cases}}\)
\(\Rightarrow x< \frac{3}{2}\)
Bài 4 :
\(P=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-1\right).\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)
\(\Leftrightarrow\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\right)\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}\) \(\left(ĐKXĐ:x>0;x\ne4;x\ne1\right)\)
b) \(P=\frac{1}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\)
\(\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\)
\(\Leftrightarrow4\sqrt{x}-3\sqrt{x}=8\)
\(\Leftrightarrow\sqrt{x}=8\)
\(\Leftrightarrow x=64\left(TMĐXĐ\right)\)
Vậy khi \(P=\frac{1}{4}\) thì x=64
Bài 4 :
c) Xét \(x=4+2\sqrt{3}\)(tmđkxđ)
\(=3+2\sqrt{3}+1\)
\(=\left(\sqrt{3}+1\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Thay \(x=\sqrt{3}+1\)vào biểu thức P ta có :
\(\frac{\left(\sqrt{3}+1\right)-2}{3.\left(\sqrt{3}+1\right)}=\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{3.\left(\sqrt{3}+1\right).\left(\sqrt{3}-1\right)}=\frac{\left(\sqrt{3}-1\right)^2}{3.\left(3-1\right)}=\frac{2-\sqrt{3}}{3}\)
Vậy khi \(x=4+2\sqrt{3}\)thì P = \(\frac{2-\sqrt{3}}{3}\)
d) \(P\in Z\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}\in Z\)
\(\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{\sqrt{x}}{3\sqrt{x}}-\frac{2}{3\sqrt{x}}=\frac{1}{3}-\frac{2}{3\sqrt{x}}\)
\(\Rightarrow\frac{2}{3\sqrt{x}}\in Z\Leftrightarrow2⋮3\sqrt{x}\Leftrightarrow3\sqrt{x}\inƯ\left(2\right)\)
Mà Ư(2) = \(\left\{\pm2;\pm1\right\}\)
Ta có bảng sau
\(3\sqrt{x}\) | \(-2\) | \(-1\) | \(1\) | \(2\) |
\(\sqrt{x}\) | \(\frac{-2}{3}\) | \(\frac{-1}{3}\) | \(\frac{1}{3}\) | \(\frac{2}{3}\) |
\(x\) | KTMĐK | KTMĐK | \(\frac{1}{9}\) | \(\frac{4}{9}\) |
Nhậnđịnh | KTMĐK | KTMĐK | KTMĐK | KTMĐK |
Không có giá trị thích hợp của \(x\in Z\)thỏa mãn điều kiện \(P\in Z\)