CMR: (x+1)^2n - x^2n - 2x - 1 chia hết x*(x+1)*(2x+1) với mọi x
chứng minh rằng với mọi số tự n:
a) (x+1)^2n - x^2n - 2x - 1 chia hết cho x(x+1)(2x+1)
b) x^4n+2 +2x^n+1 + 1 chia hết cho (x+1)^2
Chứng minh rằng với mọi n thuộc N ta luôn có : (x+1)^2n-x^2n-2x-1 chia hết cho x(x+1)(2x+1)
CMR: với mọi số tự nhiên n :
a) \(\left(x+1\right)^{2n}-x^{2n}-2x-1\) chia hết cho \(x\left(x+1\right)\left(2x+1\right)\)
b) \(x^{4n+2}+2x^{2n+1}+1\) chia hết cho \(\left(x+1\right)^2\)
c) \(\left(x+1\right)^{4n+2}+\left(x-1\right)^{4n+2}\) chia hết cho \(x^2+1\)
chứng minh rằng với mọi số tự nhiên n: (x+1)^2n-x^2n-2x-1 chia hết cho x*(x+1)*(2x+1)
CẢM ƠN CÁC BẠN NHIỀU
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
1,CMR với mọi n:
a.x4n+2+2x2n+1+1 chia hết cho (x+1)2
cmr: vs mọi sô tự nhiên n
\(\left(x+1\right)^{2n}-x^{2n}-2x-1⋮x\left(x+1\right)\left(2x+1\right)\)
cm = cách mọi nghiệm của đa thức chia đều là nghiệm của đa thức bị chia
Bài 1; tìm x
{2x-3(x-1)-5[x-4(3-2x)+10}.(-2x)
Bài 2: CMR với mọi số nguyên N thì
a) (n2+3n-1)(n+2)-n3+2n chia hết cho 5
b)n.(n+5)-(n-3)(n+2) chia hết cho 6
Gấpppppppppp
1) Thực hiện phép tính
a) (2x+3)^2+(2x-3)^2-(2x+3)(4x-6)+xy
b) (4x^2+4x+1): (2x+1)
2)Phân tích đa thức sau thành nhân tử
x^3-x+3x^2y+3xy^2-y
3) Tìm x
a)4x^2-12x =-9
b) (5-2x)(2x+7) =4x^2-25
c) x^3+27+(x+3)(x-9) =0
d) 4(2x+7)^2-9(x+3)^2=0
4)CMR với mọi số nguyên n thì:
a)n^2(n+1)+2n(n+1) chia hết cho 6
b)(2n-1)^3-(2n-1) chia hết cho 8
c)(n+7)^2-(n-5)^2 chia hết cho 24
4.a)n2(n+1)+2n(n+1)=(n+1)(n2+2n)=n(n+1)(n+2)
n,(n+1),(n+2) là ba số nguyên liên tiếp nên chia hết cho 2 và 3
\(\Rightarrow\)n(n+1)(n+2) chia hết cho 6
4 Chứng minh rằng:
a)\(n^2+\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
Ta có:
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Ta thấy n , n+1 và n+2 là ba số tự nhiên liên tiếp
=> n(n+1) (n+2)\(⋮\)6
=> đpcm
b)\(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
Ta có:
\(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]\)
\(=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(=\left(2n-1\right).2\left(n-1\right).2n\)
\(=4n\left(2n-1\right)\left(n-1\right)\)
=>\(4n\left(2n-1\right)\left(n-1\right)⋮4\left(1\right)\)
Mà(2n-1)(n-1)=(n+n-1)(n-1)
=>\(\left(2n-1\right)\left(n-1\right)⋮2\left(2\right)\)
Từ (1) và (2)=> Đpcm
c)\(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
Câu hỏi của Ngoc An Pham - Toán lớp 8 | Học trực tuyến
Chúc bạn học tốt!^^