Cmr với mọi số nguyên n thì:
A=(2.n+1).(n^2-3.n-1)-2n^3+1 chia hết cho 5
CMR:
a/\(55^{n+1}-55n\) chia hết cho 54 với mọi\(x\in N\)
Ta có \(55^{n+1}-55^n=......................\)
b/\(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
Ta có:\(n^2\left(n+1\right)+2n\left(n+2\right)=.......\)
c/\(2^{n+2}+2^{n+1}+2^n\) chia hết cho 7,với mọi\(x\in N\).
Ta có:\(2^{n+2}+2^{n+1}+2^n=...\)
1. Giải phương trình: \(\left(x-3\right)^3+\left(x+2\right)^3=\left(2x-1\right)^3\)
2. CMR: \(2009^{2008}+2011^{2010}\) chia hết cho 2010
3.CMR: \(n^3+2012n\) chia hết cho 48 với mọi n chẵn
Với mọi n thuộc N. CMR:
a. (9 . 10n + 18) chia hết cho 27.
b. (92n + 14) chia hết cho 5.
c. [n(n2 + 1)(n2 + 4) chia hết cho 5.
d. [mn(m2 - n2)] chia hết cho 3 với mọi m, n thuộc Z.
e. (n12 - n8 - n4 + 1) chia hết cho 512
CMR : a) Tích hai số chẵn liên tiếp chia hết cho 8?
b) ( (n^2 + n - 1)^2 - 1 chia hết cho 24 vs mọi n?
1.Cmr 46n+296.13n chia hết cho 1947 với n >0,n thuộc N,n lẻ
2.Cmr 22n(22n+1-1)-1 chia hết cho 9 với n thuộc N*
bài 7: chứng minh rằng
a. a^2(a+1)+2a(a+1) chia hết cho 6 với a là số nguyên
b. a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
c. x^2+2x+2>0 với mọi x
d. x^2-x+1>0 với mọi x
e. -x^2+4x-5<0 với mọi x
bài 7 : chứng minh rằng
a. a^2(a+1)+2a(a+1) chia hết cho 6 với a là số nguyên
b. a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
c. x^2+2x+2>0 với mọi x
d. x^2-x+1>0 với mọi x
e. -x^2+4x-5<0 với mọi x
1. CMR: 2a^3+3a^2+a chia hết cho 6 với mọi a thuộc Z
2. CMR: a^5 - 10a^4 +35a^3 +50a^2 +24a chia hết cho 120