Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lê nhật duẫn

bài 7 : chứng minh rằng

a. a^2(a+1)+2a(a+1) chia hết cho 6 với a là số nguyên

b. a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên

c. x^2+2x+2>0 với mọi x

d. x^2-x+1>0 với mọi x

e. -x^2+4x-5<0 với mọi x

Nguyễn Lê Phước Thịnh
26 tháng 3 2020 lúc 16:42

a) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)\)

\(=\left(a+1\right)\cdot\left(a^2+2a\right)\)

\(=a\cdot\left(a+1\right)\cdot\left(a+2\right)\)

Vì a và a+1 là hai số nguyên liên tiếp nên \(a\cdot\left(a+1\right)⋮2\)(1)

Vì a; a+1 và a+2 là ba số nguyên liên tiếp nên \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮3\)(2)

mà 2 và 3 là hai số nguyên tố cùng nhau(3)

nên từ (1); (2) và (3) suy ra \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮6\forall a\in Z\)

hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\forall a\in Z\)(đpcm)

b) Ta có: \(a\left(2a-3\right)-2a\left(a+1\right)\)

\(=2a^2-3a-2a^2-2a\)

\(=-5a⋮5\forall a\in Z\)

hay \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\forall a\in Z\)(đpcm)

c) Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\in Z\)

hay \(x^2+2x+2>0\forall x\in Z\)(đpcm)

d) Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\in Z\)

hay \(x^2-x+1>0\forall x\in Z\)(đpcm)

e) Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\in Z\)

\(\Rightarrow-\left(x-2\right)^2\le0\forall x\in Z\)

\(\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\in Z\)

hay \(-x^2+4x-5< 0\forall x\in Z\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
lê nhật duẫn
Xem chi tiết
Linh Ngô
Xem chi tiết
le thi yen chi
Xem chi tiết
Nguyễn Thu Trang
Xem chi tiết
Lê Quang Dũng
Xem chi tiết
Đậu Thị Tường Vy
Xem chi tiết
Thương Thương
Xem chi tiết
Lê Bảo Châu
Xem chi tiết
Thu Hà Nguyễn
Xem chi tiết