a) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=\left(a+1\right)\cdot\left(a^2+2a\right)\)
\(=a\cdot\left(a+1\right)\cdot\left(a+2\right)\)
Vì a và a+1 là hai số nguyên liên tiếp nên \(a\cdot\left(a+1\right)⋮2\)(1)
Vì a; a+1 và a+2 là ba số nguyên liên tiếp nên \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮3\)(2)
mà 2 và 3 là hai số nguyên tố cùng nhau(3)
nên từ (1); (2) và (3) suy ra \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮6\forall a\in Z\)
hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\forall a\in Z\)(đpcm)
b) Ta có: \(a\left(2a-3\right)-2a\left(a+1\right)\)
\(=2a^2-3a-2a^2-2a\)
\(=-5a⋮5\forall a\in Z\)
hay \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\forall a\in Z\)(đpcm)
c) Ta có: \(x^2+2x+2\)
\(=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\in Z\)
hay \(x^2+2x+2>0\forall x\in Z\)(đpcm)
d) Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\in Z\)
hay \(x^2-x+1>0\forall x\in Z\)(đpcm)
e) Ta có: \(-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left(x-2\right)^2-1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\in Z\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\in Z\)
\(\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\in Z\)
hay \(-x^2+4x-5< 0\forall x\in Z\)