cho tam giác abc có ab=3 ac=6 , góc a=120 .kẻ tia phân giác ad. tính ad
Cho tam giác ABC có góc A bằng 120 độ. Kẻ AD là tia phân giác của góc BAC biết AD = AB + AC. CMR: tam giác BCD đều
Cho tam giác ABC có góc A = 120 độ , AB = 3 cm , AC= 6 cm . Tính độ dài phân giác AD
Cho tâm giác ABC với đường phân giác AD thỏa mãn : 1/AD = 1/AB +1/AC . tính số đo góc A
cho tam giác abc có góc a bằng 120 độ, góc b bằng 40 độ, kẻ các đường phân giác trong ad,be.a) chứng minh rằng 1/ab+1/ac=1/ad b) cho ab=m, ac=n ,diện tích tam giác abc là s tính diện tích tam giác abe theo m,n,s
cho tam giác abc có ab/ac=2/3, bc = 18cm. tia phân giác góc bac cắt bc tại d a) tính db,đc b) kẻ nhà vuông góc với ad, ck vuông góc với ad tính bh/ck, tính diện tích tam giác bhd/ diện tích tam giác ckd
a: Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/DC=AB/AC=2/3
=>3DB-2DC=0
mà DB+DC=18
nên DB=7,2cm; DC=10,8cm
b: Xét ΔBDH vuông tại H và ΔCDK vuông tại K có
góc BDH=góc CDK
=>ΔBDH đồng dạng với ΔCDK
=>BH/CK=BD/CD=2/3
Cho tam giác ABC có góc A =120 độ, kẻ Ax là tia phân giác của góc A. Trên tia Ax lấy điểm E sao cho AB+AC=AE. Trên tia Ax lấy D sao cho AB=AD. Chứng minh:
a/ Tam giác ABD đều
b/ Tam giác ABC = Tam giác DBE
c/ Tam giác BCE đều.
a) Xét tam giác ABD có :
AB = AD (gt)
Suy ra tam giác ABD cân tại BAD
Suy ra góc ABD = góc ADB ( 2 góc đáy)
Ta có : góc BAD + góc CAD = góc BAC
mà góc BAC = 120 độ ; góc BAD =góc CAD (gt)
Suy ra 2BAD= 120 độ
Suy ra BAD= 120 độ chia 2
Suy ra BAD =60 độ
Ta lại có tam giác BAD cân tại BAD
Suy ra BDA =DBA =(180 độ - BAD) chia 2
mà BAD = 60 độ
Suy ra BDA=DBA= (180 độ - 60 độ ) chia 2
Suy ra BDA=DBA = 60độ
Xét tam giác BDA có
BDA=DBA=BAD=60 độ
Suy ra tam giác BDA đều
Cho ▲ABC có AB= 3cm AC=6cm ,góc A=120° kẻ phân giác AD tính AD
kẻ đường BH vuông góc xuống AC
ta có bah=60 tính đc HA,BH
theo tính chất đường phân giác ta có AB/AC=BD/DC=1/2 NÊN DC/BC=2/3
KẺ DK vuông góc với AC ta tính được DK và HK theo các tgiac đồng dạng
ta lại tính đc AK=HK-AH
biết DK và AK áp dụng pitago tìm đc ad
ĐS:2
Cho tam giác ABC có AB=6 (cm); AC=12 (cm); A= 120độ .Kẻ đường phân giác AD của góc A. Tính độ dài AD.
Áp dụng hàm số cos, ta có: \(BC=\sqrt{6^2+12^2-2.6.12.\cos120^o}\)
\(d_a=\frac{2}{b+c}\sqrt{bc\left(p-a\right)}\)
Đến đây bạn tự làm nhé!
Bài 2: Cho tam giác ABC có AB=AC, kẻ AD vuông góc với BC. Chứng minh rằng AD là tia phân giác của góc A?
Ta có AB=AC⇒ΔABC cân tại A
Vì trong tam giác cân đường cao đồng thời là đường phân giác ⇒AD cũng là đường phân giác
Ta có: ΔABC cân tại A
mà AD là đường cao
nên AD là đường phân giác
Định lí đảo tam giác cân là nếu 1 đường là đường cao phân giác trung tuyến của tam giác cân thì có thể từ 1 trong 3 cái trên suy ra 2 cái còn lại