\(cho\hept{\begin{cases}a,b,c>0\\a+2b+3c\ge20\end{cases}}\)
cm
\(M=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\ge13\)
Bài 1: \(\hept{\begin{cases}a,b,c>0\\ab+bc+ca=5abc\end{cases}CMR:P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\le}1\)
Bài 2:\(\hept{\begin{cases}a,b,c>0\\a+b+c=9\end{cases}}\)Tìm GTNN \(P=\frac{1}{\sqrt[3]{a+2b}}+\frac{1}{\sqrt[3]{b+2c}}+\frac{1}{\sqrt[3]{c+2a}}\)
Bài 2:
\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)
\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)
\(\Rightarrow P\ge\sqrt[3]{3}\)
Dấu bằng xẩy ra khi a=b=c=3
Bài 1:
\(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)
Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)
\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)
Áp dụng bđt AM-GM ta có:
\(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)
\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)
\(\Rightarrow\)(*) luôn đúng
Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)
Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)
Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)
\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)
https://olm.vn/thanhvien/ankhunge
Làm sai rồi ạ
1, Cho \(\hept{\begin{cases}a,b>0\\a^2+b^2=1\end{cases}.}\)Tìm min A= \(\left(1+a\right)\left(1+\frac{1}{b}\right)+\left(1+b\right)\left(1+\frac{1}{a}\right)\)
2, Cho \(\hept{\begin{cases}a^2+2b^2\le3c^2\\a,b,c>0\end{cases}}\).Chứng minh : \(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
1,
\(A=1+a+\frac{1}{b}+\frac{a}{b}+1+b+\frac{1}{a}+\frac{b}{a}\)
\(\ge1+1+2\sqrt{\frac{a}{b}.\frac{b}{a}}+a+b+\frac{a+b}{ab}=4+a+b+\frac{4\left(a+b\right)}{\left(a+b\right)^2}=4+a+b+\frac{4}{a+b}\)
lại có \(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a+b\le\sqrt{2}\)
\(4+a+b+\frac{4}{a+b}=4+\left(a+b+\frac{2}{a+b}\right)+\frac{2}{a+b}\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
\(\Rightarrow A\ge4+3\sqrt{2}\)
câu 2
ta có:\(\left(2b^2+a^2\right)\left(2+1\right)\ge\left(2b+a\right)^2\Rightarrow3c\ge a+2b\)
\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(Q.E.D\right)\)
Cho \(\hept{\begin{cases}ab+bc+ca=3\\a,b,c>0\end{cases}}\)
Tim Min P= \(\frac{a}{1+2b^3}+\frac{b}{1+2c^3}+\frac{c}{1+2a^3}\)
ta có
\(\frac{a}{1+2b^3}=\frac{a\left(1+2b^3\right)-2ab^3}{1+2b^3}=a-\frac{2ab^3}{1+2b^3}\)
Vì \(1+2b^3\ge3b^2\left(cosi\right)\)
\(\Rightarrow a-\frac{2ab^3}{a+2b^3}\ge a-\frac{2}{3}ab\)
cmtt ta đc
P\(\ge a+b+c-\frac{2}{3}\left(ab+bc+ca\right)\)
\(P\ge a+b+c-2\)
mặt khác \(\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)
\(\Rightarrow a+b+c\ge3\)
\(\Rightarrow P\ge3-2=1\)
Dấu = xảy ra a=b=c=1
Tìm a, b, c thỏa mãn:
\(\hept{\begin{cases}a^4-2b=\frac{-1}{2}\\b^4-2c=\frac{-1}{2}\\c^4-2a=\frac{-1}{2}\end{cases}}\)
Cho \(\hept{\begin{cases}ab+bc+ca\le abc\\a,b,c>0\end{cases}}\)
Tìm Min \(A=\frac{a^2}{b+2a}+\frac{b^2}{c+2b}+\frac{c^2}{a+2c}\)
Theo gt \(ab+bc+ca\le abc^{\left(3\right)}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1\)
\(\frac{9}{a+b+c}\le1\)
\(a+b+c\ge9^{\left(1\right)}\)
Mặt khác
\(a^2+b^2+c^2\ge3\left(a+b+c\right)\)
\(a^2+b^2+c^2\ge9\cdot3=27^{\left(2\right)}\)
Vì a,b,c >0, áp dụng bất đẳng thức cô si ta có:
\(\frac{a^2b}{b+2a}+\frac{b\left(b+2a\right)}{9}\ge2\sqrt{\frac{a^2b}{b+2a}\cdot\frac{b\left(b+2a\right)}{9}}=\frac{2ab}{3}\)
CMTT
\(\frac{b^2c}{c+2b}+\frac{c\left(c+2b\right)}{9}\ge\frac{2bc}{3}\)
\(\frac{c^2a}{a+2c}+\frac{a\left(a+2c\right)}{9}\ge\frac{2ca}{3}\)
Cộng vế với vế a được :
\(A+\frac{a^2+b^2+c^2}{9}+\frac{2\left(ab+bc+ca\right)}{9}\ge\frac{2\left(ab+bc+ca\right)}{3}\)
\(A\ge\frac{4\left(ab+bc+ca\right)}{3}-\frac{a^2+b^2+c^2}{9}^{\left(#\right)}\)
Từ 1,2,3 và # ta có
\(A\ge\frac{4\cdot9}{3}-\frac{27}{9}=9\)
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=3\)
Vậy...
cho\(\hept{\begin{cases}a,b,c>0\\ab+bc+ca=3\end{cases}}\) . Chứng minh E= \(\frac{a^2}{a+2b^2}\)+\(\frac{b^2}{b+2c^2}\)+\(\frac{c^2}{c+2a^2}\)>=1
cho\(\hept{\begin{cases}a,b,c,d>0\\a+b+c+d=4\end{cases}}\). Chứng minh rằng D=\(\frac{a}{1+b^2c}\)+\(\frac{b}{1+c^2d}\)+\(\frac{c}{1+d^2a}\)+\(\frac{d}{1+a^2b}\)>=2
Cho a,b,c>0 và \(a+2b+3c\ge20\). Tìm minQ = a+b+c + \(\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
1. Cho a > 0, b > 0 và a + b >= 2. Cmr: \(\frac{2+a}{1+a}+\frac{1-2b}{1+2b}\ge\frac{8}{7}\)
2. Gọi a, b, c lần lượt là độ dài 3 cạnh của một tam giác có chu vi = 2. Cmr: \(a^2+b^2+c^2+2abc< 2\)
3. Tìm GTNN của \(B=x^2+\sqrt{x^4+\frac{1}{x^2}}\)
4. Cho a, b,c là các số thực dương thỏa a + b + c = 6abc Timg GTNN của
\(S=\frac{bc}{a^3\left(c+2b\right)}+\frac{ca}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\)
5. Giải hpt
a. \(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\\frac{1}{4}+\frac{3}{2}\left(x+\frac{1}{y}\right)=xy+\frac{1}{xy}\end{cases}}\)
b. \(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+xy+2y^2=4\end{cases}}\)
NHỜ M.N GIÚP MK VS. CẢM ƠN !!!
4. Ta có: \(a+b+c=6abc\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
\(\Rightarrow xy+yz+zx=6\)
Lại có: \(\frac{bc}{a^3\left(c+2b\right)}=\frac{1}{a^3\frac{c+2b}{bc}}=\frac{\frac{1}{a^3}}{\frac{1}{b}+\frac{2}{c}}=\frac{x^3}{y+2z}\)
Tương tự suy ra:
\(S=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}\ge\frac{xy+yz+zx}{3}=2\)
Dấu = xảy ra khi \(x=y=z=\sqrt{2}\Rightarrow a=b=c=\frac{1}{\sqrt{2}}\)