Ta có
M = (3a/4+3/a) + ( c/4+4/c) + (b/2+9/2b) + a/4 + b/2 + 3c/4 >= 3 + 2 + 3 +(a+2b+3c)/4 >= 13
Dấu bằng xảy ra khi a=2,b=3,c=4
Ta có
M = (3a/4+3/a) + ( c/4+4/c) + (b/2+9/2b) + a/4 + b/2 + 3c/4 >= 3 + 2 + 3 +(a+2b+3c)/4 >= 13
Dấu bằng xảy ra khi a=2,b=3,c=4
Bài 1: \(\hept{\begin{cases}a,b,c>0\\ab+bc+ca=5abc\end{cases}CMR:P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\le}1\)
Bài 2:\(\hept{\begin{cases}a,b,c>0\\a+b+c=9\end{cases}}\)Tìm GTNN \(P=\frac{1}{\sqrt[3]{a+2b}}+\frac{1}{\sqrt[3]{b+2c}}+\frac{1}{\sqrt[3]{c+2a}}\)
1, Cho \(\hept{\begin{cases}a,b>0\\a^2+b^2=1\end{cases}.}\)Tìm min A= \(\left(1+a\right)\left(1+\frac{1}{b}\right)+\left(1+b\right)\left(1+\frac{1}{a}\right)\)
2, Cho \(\hept{\begin{cases}a^2+2b^2\le3c^2\\a,b,c>0\end{cases}}\).Chứng minh : \(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
Cho \(\hept{\begin{cases}ab+bc+ca=3\\a,b,c>0\end{cases}}\)
Tim Min P= \(\frac{a}{1+2b^3}+\frac{b}{1+2c^3}+\frac{c}{1+2a^3}\)
Cho \(\hept{\begin{cases}ab+bc+ca\le abc\\a,b,c>0\end{cases}}\)
Tìm Min \(A=\frac{a^2}{b+2a}+\frac{b^2}{c+2b}+\frac{c^2}{a+2c}\)
cho\(\hept{\begin{cases}a,b,c>0\\ab+bc+ca=3\end{cases}}\) . Chứng minh E= \(\frac{a^2}{a+2b^2}\)+\(\frac{b^2}{b+2c^2}\)+\(\frac{c^2}{c+2a^2}\)>=1
cho\(\hept{\begin{cases}a,b,c,d>0\\a+b+c+d=4\end{cases}}\). Chứng minh rằng D=\(\frac{a}{1+b^2c}\)+\(\frac{b}{1+c^2d}\)+\(\frac{c}{1+d^2a}\)+\(\frac{d}{1+a^2b}\)>=2
1. Cho a > 0, b > 0 và a + b >= 2. Cmr: \(\frac{2+a}{1+a}+\frac{1-2b}{1+2b}\ge\frac{8}{7}\)
2. Gọi a, b, c lần lượt là độ dài 3 cạnh của một tam giác có chu vi = 2. Cmr: \(a^2+b^2+c^2+2abc< 2\)
3. Tìm GTNN của \(B=x^2+\sqrt{x^4+\frac{1}{x^2}}\)
4. Cho a, b,c là các số thực dương thỏa a + b + c = 6abc Timg GTNN của
\(S=\frac{bc}{a^3\left(c+2b\right)}+\frac{ca}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\)
5. Giải hpt
a. \(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\\frac{1}{4}+\frac{3}{2}\left(x+\frac{1}{y}\right)=xy+\frac{1}{xy}\end{cases}}\)
b. \(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+xy+2y^2=4\end{cases}}\)
NHỜ M.N GIÚP MK VS. CẢM ƠN !!!
Cho \(\hept{\begin{cases}a,b,c>0\\\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3\end{cases}}\)
Tìm max A = \(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+a+c\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\)
Help me pliz T^T
1. cho \(-1\le a,b,c\le2\) và a+b+c=0. CMR \(a^2+b^2+c^2\le6\)
2. cho \(\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\)cmr hoán vị của \(a\sqrt[3]{1+b-c}\ge\frac{3\sqrt{17}}{2}\)
3. \(\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\)cmr: hoán vị của\(\frac{a}{a^2+1}\le\frac{9}{10}\)
4. \(\hept{\begin{cases}a,b,c>0\\a+b+c\le\frac{3}{2}\end{cases}}\)cmr: hoán vị của \(a\sqrt[3]{1+b-c}\le1\)