9 x 10 x 2 =
giải phương trình:
a/x-1/x^2-x+1 - x+/x^2+x+1 = 10/x(x^4+x^2+1)
b/ x+9/10 + x+10/9 = 9/x+10 + 10/x+9
c/ x^2-2x+2/x-1 + x^2-8x+20 = x^2-4x+6/x-2 + x^2-6x +12/x-3
Tính nhẩm :
9 x 2 =
9 x 5 =
9 x 8 =
9 x 10 =
2 x 9 =
5 x 9 =
8 x 9 =
10 x 9 =
9 x 2 = 18
9 x 5 = 45
9 x 8 = 72
9 x 10 = 90
2 x 9 = 18
5 x 9 = 45
8 x 9 = 72
10 x 9 = 90
Tính bằng cách thuận tiện
a. 5/7 x 5/9 + 4/9 x 5/7
b. 1/10 + 5/9 + 4/9 + 9/10 – 1
c. 5/7 x 5/9 + 4/9 x 5/7 + 2/7
d. 2/7 + 2/8 + 1/4 + 1/7 + 4/7
e. 4/5 + 3/10 + 2/10 + 0,7
f. 326 x 728 + 326 x 272
a) \(\dfrac{5}{7}\times\dfrac{5}{9}+\dfrac{4}{9}\times\dfrac{5}{7}\)
\(=\dfrac{5}{7}\times\left(\dfrac{4}{9}+\dfrac{5}{9}\right)\)
\(=\dfrac{5}{7}\times1\)
\(=\dfrac{5}{7}\)
b) \(\dfrac{1}{10}+\dfrac{5}{9}+\dfrac{4}{9}+\dfrac{9}{10}-1\)
\(=\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\left(\dfrac{1}{10}+\dfrac{9}{10}-1\right)\)
\(=1+0\)
\(=1\)
c) \(\dfrac{5}{7}\times\dfrac{5}{9}+\dfrac{4}{9}\times\dfrac{5}{7}+\dfrac{2}{7}\)
\(=\dfrac{5}{7}\times\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\dfrac{2}{7}\)
\(=\dfrac{5}{7}+\dfrac{2}{7}\)
\(=1\)
d) \(\dfrac{2}{7}+\dfrac{2}{8}+\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{4}{7}\)
\(=\left(\dfrac{2}{8}+\dfrac{1}{4}\right)+\left(\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{4}{7}\right)\)
\(=\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+1\)
\(=\dfrac{1}{2}+1\)
\(=\dfrac{3}{2}\)
e) \(\dfrac{4}{5}+\dfrac{3}{10}+\dfrac{2}{10}+0,7\)
\(=\dfrac{4}{5}+\dfrac{5}{10}+\dfrac{7}{10}\)
\(=\dfrac{4}{5}+\dfrac{12}{10}\)
\(=\dfrac{4}{5}+\dfrac{6}{5}\)
\(=\dfrac{10}{5}\)
\(=2\)
g) \(362\times728+326\times272\)
\(=326\times\left(728+272\right)\)
\(=326\times1000\)
\(=326000\)
giải phương trình
a. x-1/x^2 -x +1 - x+1/x^2 +x +1 = 10 / x(x^4 +x^2 +1)
b. x+9/10 + x+10/9 = 9/x+10 + 10/x+9
c. x-5/x-5 + x-6/x-5 + x-7/x-5 +...+1/x-5 =4 (x thuộc N)
d. 1/x^2 +3x+2 + 1/x^2 +5x+6 + 1/x^2 +7x+12 +...+ 1/x^2 +15x+56=1/14
a: \(\dfrac{x-1}{x^2-x+1}-\dfrac{x+1}{x^2+x+1}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)=10\)
\(\Leftrightarrow x\left(x^3-1\right)-x\left(x^3+1\right)=10\)
=>-2x=10
hay x=-5
d: \(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+7\right)\left(x+8\right)}=\dfrac{1}{14}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+8}=\dfrac{1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(x+8\right)=14\left(x+8\right)-14\left(x+1\right)\)
\(\Leftrightarrow x^2+9x+8=14x+112-14x-14=98\)
\(\Leftrightarrow x^2+9x-90=0\)
\(\Leftrightarrow x\in\left\{6;-15\right\}\)
tính:
1 + 3 + 6 + 10 +....+ 45 + 55/ 1 x 10 + 2 x 9 + 3 x 8 +...+ 8 x 3 + 9 x 2 + 10 x 1
Rút gọn A= 2^19 x 27^3 + 15 x 4^9 x 9^4 / 6^9 x 2^10 + 2^10
Tử số= 2^19.9^3.3^3 + 5.3.2^9.2^9.9^4
= 2^19.9^3.3^3 + 5.3.2^18.9.9^3
= 2^19.9^3.3.3^2 + 5.3.2^18.3^2.9^3
= 2^18.9^3.3^2(2 + 5.) (đặt nhân tử chung)
=7.2^18.9^3.3^2
=7.2^18.9.9.9.3^2
=7.2^18.3^2.3^2.3^2.3^2
=7.2^18.3^8
Mẫu số= 6^9.2^10 + 6^10.2^10
= 6^9.2^10 + 6^10.2^10
=6^9.2^10(1+6)
=7.6^9.2^10.
=7.2^9.3^9.2^10
=7.2^19.3^9
Lấy tử số chia mẫu số ta được : 1/2.3 = 1/6
Rút gọn A= 2^19 x 27^3 + 15 x 4^9 x 9^4 / 6^9 x 2^10 + 2^10
-9/10 x 5/14 + 1/10 x -9/2 + 1/7 x -9/10 =?
-9/10x(5/14+1/7)+1/10x-9/2
=-9/10x7/14+1/10x-9/2
-9/10x1/2+1/10x-9/2
=-9/20+--9/20
=-18/20=-9/10
Tìm \(\lim\limits_{x\rightarrow1}\dfrac{\left(2-x\right)+\left(2-x\right)^2+\left(2-x\right)^3+...+\left(2-x\right)^9-9}{x+x^2+...+x^{10}-10}\)
Mình xin trình bày 2 cách, một là phân tích bình thường, 2 là xài L'Hospital. Bởi c3 ko ai cho xài L'Hospital để hack tự luận cả
C1: Normal
\(\left(2-x\right)+\left(2-x\right)^2+...+\left(2-x\right)^9-9\)
\(=\left[\left(2-x\right)-1\right]+\left[\left(2-x\right)^2-1\right]+...+\left[\left(2-x\right)^9-1\right]\)
\(=\left(2-x-1\right)+\left(2-x-1\right)\left(2-x+1\right)+\left(2-x-1\right)\left[\left(2-x\right)^2+\left(2-x\right)+1\right]+...+\left(2-x-1\right)\left[\left(2-x\right)^8+\left(2-x\right)^7+...+1\right]\)
\(=-\left(x-1\right)\left(1+2-x+1+\left(2-x\right)^2+\left(2-x\right)+1+....+\left(2-x\right)^8+\left(2-x\right)^7+...+1\right)\)
Lai co:
\(x+x^2+...+x^{10}-10=\left(x-1\right)+\left(x^2-1\right)+...+\left(x^{10}-1\right)\)
\(=\left(x-1\right)+\left(x-1\right)\left(x+1\right)+....+\left(x-1\right)\left(x^9+x^8+...+1\right)\)
\(=\left(x-1\right)\left[1+x+1+x^2+x+1+....+x^9+x^8+...+1\right]\)
\(\Rightarrow\lim\limits_{x\rightarrow1}....=\lim\limits_{x\rightarrow1}\dfrac{-[1+2-x+1+\left(2-x\right)^2+\left(2-x\right)+1+...+\left(2-x\right)^8+\left(2-x\right)^7+...+1]}{1+x+1+x^2+x+1+...+x^9+x^8+...+1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{-[9.1+8.\left(2-x\right)+7\left(2-x\right)^2+6\left(2-x\right)^3+5\left(2-x\right)^4+4\left(2-x\right)^5+3\left(2-x\right)^6+2\left(2-x\right)^7+\left(2-x\right)^8]}{10.1+9x^2+8x^3+7x^4+6x^5+5x^6+4x^7+3x^8+2x^9+x^{10}}\)
\(=\dfrac{-[1+2+3+...+9]}{1+2+3+...+10}=\dfrac{-45}{55}\)
C2: L'Hospital
\(=\lim\limits_{x\rightarrow1}\dfrac{-1-2\left(2-x\right)-3\left(2-x\right)^2-...-9\left(2-x\right)^8}{1+2x+3x^2+...+10x^9}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{-1-2-3-...-9}{1+2+3+...+10}=-\dfrac{45}{55}\)
https://www.mathvn.com/2020/07/qui-tac-lhopital-va-ung-dung-trong-tinh.html
Tìm hiểu thêm về quy tắc này nhá
1/(x+1).(x+2)+.......+1/(x+9).(x+10)=9/10