-6x=5y
Bài 1. Thu gọn:
a) x2 – 4 – (x + 2)2 | b) (x + 2)(x – 2) – (x – 3)(x + 1) |
c) (x – 2)(x + 2) – (x – 2)(x + 5) | d) (6x + 1)2 + (6x – 1)2 – 2(6x + 1)(6x – 1) |
e) 7a(3a – 5) + (2a -3)(4a + 1) – (6a – 2)2 | g) (5y – 3)(5y + 3) – (5y – 4)2 |
h) (3x + 1)3 – (1 – 2x)3 | i) (2x + 1)2 + 2(4x2 – 1) + (2x – 1)2 |
a: Ta có: \(x^2-4-\left(x+2\right)^2\)
\(=x^2-4-x^2-4x-4\)
=-4x-8
b: Ta có: \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(=x^2-4-x^2+2x+3\)
=2x-1
c: ta có: \(\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)\)
\(=\left(x-2\right)\left(x+2-x-5\right)\)
\(=-3x+6\)
d: Ta có: \(\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(=\left(6x+1-6x+1\right)^2\)
=4
e: ta có: \(7a\left(3a-5\right)+\left(2a-3\right)\left(4a+1\right)-\left(6a-2\right)^2\)
\(=21a^2-35a+8a^2+2a-12a-3-\left(36a^2-24a+4\right)\)
\(=29a^2-45a-3-36a^2+24a-4\)
\(=-7a^2-21a-7\)
g: ta có: \(\left(5y-3\right)\left(5y+3\right)-\left(5y-4\right)^2\)
\(=25y^2-9-25y^2+40y-16\)
=40y-25
h: Ta có: \(\left(3x+1\right)^3-\left(1-2x\right)^3\)
\(=27x^3+27x^2+9x+1-1+6x-12x^2+8x^3\)
\(=35x^3+15x^2+15x\)
i: Ta có: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=16x^2\)
hệ phương trình x+2y=3 4x+5y=6
x+y=5 2x-y=4
x+2y=5 x-5y=-9
a: \(\left\{{}\begin{matrix}x+2y=3\\4x+5y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+8y=12\\4x+5y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3y=6\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3-2y=3-2\cdot2=-1\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}x+y=5\\2x-y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y+2x-y=5+4\\x+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=9\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5-3=2\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}x+2y=5\\x-5y=-9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+2y-x+5y=5+9=14\\x+2y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7y=14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=1\end{matrix}\right.\)
Dùng hẳng đẳng thức để khai triển và thu gọn
a) (6x+5y) ( 6x-5y)
b) (-4xy-5)(5-4xy)
c) (3x-4)^2 +2.(3x - 4 ) . ( 4-x ) + (4-x)^2
\(a,\left(6x+5y\right)\left(6x-5y\right)\)
\(=\left(6x\right)^2-\left(5y\right)^2\)
\(=36x^2-25x^2\)
\(b,\left(-4xy-5\right)\left(5-4xy\right)\)
\(=-\left(5+4xy\right)\left(5-4xy\right)\)
\(=-[5^2-\left(4xy\right)^2]\)
\(=-\left(25-16xy^2\right)\)
\(c,\left(3x-4\right)^2+2.\left(3x-4\right).\left(4-x\right)+\left(4-x\right)^2\)
\(=\left(3x-4\right)\left(3x-4+2\right)\left(4-x\right)\left(1+4-x\right)\)
\(=\left(3x-4\right)\left(3x-2\right)\left(4-x\right)\left(5-x\right)\)
Phân số 2x/5y bằng phân thức nào sao đâu
A.5x/2y
B.6x/15y
C.2y/5x
D.5y/2x
không thấy gì ngoài vạch đen
Tim GTNN :
x2 + 5y2 + 4xy - 6x + 5y - 9
Giai hệ phương trình
6x-5y=-49
-3x+2y=22
7x+5y=10
bn có máy tính thì vào eqn rùi vào un.. j đó nhấn 2 rùi giải thui ak, mk mới lớp 6 nhưng mk bít cách giải hệ phương trình 2 ẩn rùi
Hệ gì lạ thế >? bạn viết rõ ra mình mới giúp được
6x^2+5y^2=74
thu gọn
a) 5y.(2y-1)-(3y+2).(3-3y)
b) (6x+1)^2 -2(6x+1).(6x-1)+(6x-1)^2
c) (2x+3)-2(2x+3)(x-2)+(x-2)^2
`a)5y(2y-1)-(3y+2)(3-3y)`
`=10y^2-5y+(3y+2)(3y-3)`
`=10y^2-5y+9y^2-9y+6y-6`
`=19y^2-8y-6`
`b)(6x+1)^2-2(6x+1)(6x-1)+(6x-1)^2`
`=(6x+1-6x+1)^2`
`=2^2=4`
`c)(2x+3)^2-2(2x+3)(x-20+(x-2)^2`
`=(2x+3-x+2)^2`
`=(x+5)^2`
`=x^2+10x+25`
Tìm giá trị nhỏ nhất của:
H=x2+5y2+4xy-6x+5y-9
Có H = x2 + 5y2 + 4xy - 6x + 5y - 9
= [(x2 + 4xy + 4y2) - 6x - 12y + 9] + (y2 + 17y + \(\frac{289}{4}\)) - \(\frac{361}{4}\)
= [(x + 2y)2 - 2(x + 2y).3 + 32] + (y2 + 2.y.\(\frac{17}{2}\)+ \(\left(\frac{17}{2}\right)^2\)) - \(\frac{361}{4}\)
= (x + 2y - 3)2 + \(\left(y+\frac{17}{2}\right)^2\) - \(\frac{361}{4}\)
Thấy (x + 2y - 3)2 ≥ 0 với mọi x; y
\(\left(y+\frac{17}{2}\right)^2\ge0\) với mọi y
=> (x + 2y - 3)2 + \(\left(y+\frac{17}{2}\right)^2\) ≥ 0 với mọi x; y
=> (x + 2y - 3)2 + \(\left(y+\frac{17}{2}\right)^2\) - \(\frac{361}{4}\) ≥ \(\frac{-361}{4}\) với mọi x; y
=> H ≥ \(\frac{-361}{4}\) với mọi x; y
Dấu "=" xảy ra khi ...
Bn tự giải tiếp.
P/s: ko chắc đúng