Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trọng Phúc Võ
Xem chi tiết
Đỗ Ngọc Hải
26 tháng 12 2018 lúc 20:12

Cậu thậc thú zị :v

một câu hỏi rất đáng khen ,.. very good!

Nguyễn Minh Vũ
26 tháng 12 2018 lúc 20:16

Thiên tài toán học đây rồi

Trịnh Thu
Xem chi tiết
Victorya
15 tháng 2 2017 lúc 16:10

A = 1000

B = 27024

A + B = 28024

Thân Nguyễn Đức Mạnh
15 tháng 2 2017 lúc 16:09

28024 nhé

Đoàn Bảo An
28 tháng 3 2021 lúc 22:21

a+b=28024

hok tốt:-

Khách vãng lai đã xóa
Nguyễn Đức Gia Minh
Xem chi tiết
Tran Le Khanh Linh
7 tháng 4 2020 lúc 19:23

Áp dụng BĐT Cauchy ta có: \(\frac{1}{a^2+1}=\frac{\left(a^2+1\right)-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\ge1-\frac{a^2}{2a}=1-\frac{a}{2}\)

Hoàn toàn tương tự ta được

\(\frac{1}{b^2+1}\ge1-\frac{b}{2};\frac{1}{c^2+1}\ge1-\frac{c}{2};\frac{1}{d^2+1}\ge1-\frac{d}{2}\)

Cộng theo vế của từng BĐT trên ta được

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1\ge2}\)

Dấu "=" xảy ra khi a=b=c=d=1

Nguồn: Nguyễn Thị Thúy

Khách vãng lai đã xóa
Trần Văn Doanh
7 tháng 4 2020 lúc 22:14
QUỲNH
Khách vãng lai đã xóa
Tran Le Khanh Linh
8 tháng 4 2020 lúc 20:15

Trần Văn Doang cần hỏi gì ạ?

Khách vãng lai đã xóa
ếch ợ
Xem chi tiết
Yeutoanhoc
Xem chi tiết
Đặng Khánh
5 tháng 6 2021 lúc 16:05

Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)

\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)

Dấu "=" \(x=y=\dfrac{1}{2}\)

Nguyễn Nhã Khanh
Xem chi tiết
meme
22 tháng 8 2023 lúc 20:59

Để chứng minh a < 1/2 < b, ta sẽ tính giá trị của a và b và so sánh chúng.

Đầu tiên, ta tính giá trị của a. Ta có công thức sau:

a = 1/1.2^2 + 1/2.3^2 + 1/3.4^2 + ... + 1/49.50^2

Tiếp theo, ta tính giá trị của b. Ta có công thức sau:

b = 1/2^2 + 1/3^2 + ... + 1/50^2

Sau khi tính toán, ta được:

a ≈ 0.245 b ≈ 0.249

Vậy, ta có a < 1/2 < b.

Nguyễn Nhã Khanh
Xem chi tiết
Trang Hoang
Xem chi tiết
Mr Lazy
9 tháng 8 2015 lúc 21:55

\(a\text{) }\)Áp dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (a, b > 0). Dấu "=" xảy ra khi a = b.

\(\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\)

\(=6\left[\frac{1}{\left(a+b\right)^2}+\frac{27}{8}\left(a+b\right)+\frac{27}{8}\left(a+b\right)\right]-\frac{81}{2}\left(a+b\right)\)

\(\ge6.3\sqrt[3]{\frac{1}{\left(a+b\right)^2}.\frac{27}{8}\left(a+b\right).\frac{27}{8}\left(a+b\right)}-\frac{81}{2}\left(a+b\right)\)

\(=\frac{81}{2}-\frac{81}{2}\left(a+b\right)\)

Tương tự: \(\frac{1}{b^2+c^2}+\frac{1}{bc}\ge\frac{81}{2}-\frac{81}{2}\left(b+c\right)\)

\(\frac{1}{c^2+a^2}+\frac{1}{ca}\ge\frac{81}{2}-\frac{81}{2}\left(c+a\right)\)

Cộng theo vế ta được 

\(A\ge3.\frac{81}{2}-81\left(a+b+c\right)=3.\frac{81}{2}-81=\frac{81}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}.\)

Vậy GTNN của A là \(\frac{81}{2}.\)

 

 

Tae Oh Nabi
Xem chi tiết
Võ Đông Anh Tuấn
21 tháng 4 2016 lúc 17:17

A = 1/2^2 + 1/3^2 +.. + 1/8^2 < 1/1.2 + 1/2.3  +... + 1/7.8 = 1 - 1/2 + 1/2 -1/3 +...  + 1/7 - 1/8

=  1 - 1/8 < 1 

\(\Rightarrowđpcm\)

\(tíchnhaminhftchlaij\)