so sánh cặp hữu tỉ sau
\(\frac{-3}{9}và2\frac{1}{2}\)
So sánh các cặp số hữu tỉ sau:
a) \(\frac{{ - 2}}{3}\) và \(\frac{1}{{200}}\);
b) \(\frac{{139}}{{138}}\) và \(\frac{{1375}}{{1376}}\);
c) \(\frac{{ - 11}}{{33}}\) và \(\frac{{25}}{{ - 76}}\).
a) Ta có \(\frac{{ - 2}}{3} < 0\) và \(\frac{1}{{200}} > 0\) nên \(\frac{{ - 2}}{3}\)<\(\frac{1}{{200}}\).
b) Ta có: \(\frac{{139}}{{138}} > 1\) và \(\frac{{1375}}{{1376}} < 1\) nên \(\frac{{139}}{{138}}\) > \(\frac{{1375}}{{1376}}\).
c) Ta có: \(\frac{{ - 11}}{{33}} = \frac{{ - 1}}{3}\) và \(\frac{{25}}{{ - 76}} = \frac{{ - 25}}{{76}} > \frac{{ - 25}}{{75}} = \frac{{ - 1}}{3}\,\,\,\, \Rightarrow \frac{{25}}{{ - 76}} > \frac{{ - 11}}{33}\).
a: -2/3<0<1/200
b: 139/138>1
1375/1376<1
=>139/138>1375/1376
c: -11/33=-1/3=-25/75<-25/76
So sánh các cặp số hữu tỉ sau:
a) \(\frac{2}{{ - 5}}\) và \(\frac{{ - 3}}{8}\) b) \( - 0,85\) và \(\frac{{ - 17}}{{20}}\);
c) \(\frac{{ - 137}}{{200}}\) và \(\frac{{37}}{{ - 25}}\) d) \( - 1\frac{3}{{10}}\) và \(-\left( {\frac{{ - 13}}{{ - 10}}} \right)\).
a) Ta có: \(\frac{2}{{ - 5}} = \frac{{ - 16}}{{40}}\) và \(\frac{{ - 3}}{8} = \frac{{ - 15}}{{40}}\)
Do \(\frac{{ - 16}}{{40}} < \frac{{ - 15}}{{40}}\,\, \Rightarrow \,\frac{2}{{ - 5}} < \frac{{ - 3}}{8}\).
b) Ta có: \( - 0,85 = \frac{{ - 85}}{{100}} = \frac{{ - 17}}{{20}}\). Vậy \( - 0,85\)=\(\frac{{ - 17}}{{20}}\).
c) Ta có: \(\frac{{37}}{{ - 25}} = \frac{{ - 296}}{{200}}\)
Do \(\frac{{ - 137}}{{200}} > \frac{{ - 296}}{{200}}\) nên \(\frac{{ - 137}}{{200}}\) > \(\frac{{37}}{{ - 25}}\) .
d) Ta có: \( - 1\frac{3}{{10}}=\frac{-13}{10}\) ;
\(-\left( {\frac{{ - 13}}{{ - 10}}} \right) = \frac{{-13}}{{10}}\).
Vậy \(- 1\frac{3}{{10}} =-(\frac{{-13}}{{-10}})\,\).
Ví dụ 3. So sánh các số hữu tỉ sau:
a)\(\frac{9}{10}\)và \(\frac{5}{42}\) b)\(\frac{-4}{27}\)và \(\frac{10}{-73}\)
Ví dụ 4. Sắp xếp các số hữu tỉ sau theo thứ tự tăng dần:
\(\frac{5}{-6};\frac{3}{4};\frac{-7}{12};\frac{5}{8}\)
Ví dụ 5. So sánh các số hữu tỉ :
\(x=\frac{-2}{15};y=\frac{-10}{-11}\)
Ví dụ 6. So sánh các số hữu tỉ sau:
\(\frac{-16}{27};\frac{-16}{29};\frac{-16}{27}\)
Ví dụ 3. So sánh các số hữu tỉ sau:
a)\(\frac{9}{10}\)và \(\frac{5}{42}\) b)\(\frac{-4}{27}\)và \(\frac{10}{-73}\)
Ví dụ 4. Sắp xếp các số hữu tỉ sau theo thứ tự tăng dần:
\(\frac{5}{-6};\frac{3}{4};\frac{-7}{12};\frac{5}{8}\)
Ví dụ 5. So sánh các số hữu tỉ :
\(x=\frac{-2}{15};y=\frac{-10}{-11}\)
Ví dụ 6. So sánh các số hữu tỉ sau:
\(\frac{-16}{27};\frac{-16}{29};\frac{-16}{27}\)
Vd 3:
a) 9/10 > 5/42 b) -4/27 < 10/-73
Vd 4:
5/-6: -7/12; 5/8; 3/4
Vd 5:
x<y
Vd 6:
-16/27= -16/27> -16/29
So sánh các cặp số hữu tỉ sau :
\(\frac{-1}{2}\)và -1; 1,7 và -1,7; \(\frac{-1}{2}\)và 0
vì 1/2<1=> -1/2>-1(âm ngược lại vs dương)
1,7>0 mà -1,7<0=> 1,7>-1,7
vì -1/2<0/2=0 => -1/2<0
a,Ta thấy \(-\frac{2}{2}< -\frac{1}{2}\Rightarrow-1< \frac{-1}{2}\)
b,Vì \(1,7>0;-1.7< 0\Rightarrow-1,7< 1,7\)
c,Vì \(-\frac{1}{2}< 0\)
Vậy....
So sánh các số hữu tỉ sau
\(x=\frac{3}{13}+4\frac{7}{26}+1\frac{1}{2}\) và \(y=\frac{2}{3}+\frac{4}{37}+5\frac{5}{111}\)
\(x-y=\left(5+\frac{3}{13}+\frac{7}{26}+\frac{1}{2}\right)-\left(5+\frac{2}{3}+\frac{4}{37}+\frac{5}{111}\right)\)
\(=\left(\frac{1}{2}-\frac{2}{3}\right)+\left(\frac{3}{13}-\frac{4}{37}\right)+\left(\frac{7}{26}-\frac{5}{111}\right)>0\)
=> x> y
a)\(\frac{9}{10}\)và \(\frac{5}{42}\) b)\(\frac{-4}{27}\)và \(\frac{10}{-73}\)
Ví dụ 4. Sắp xếp các số hữu tỉ sau theo thứ tự tăng dần:
\(\frac{5}{-6};\frac{3}{4};\frac{-7}{12};\frac{5}{8}\)
Ví dụ 5. So sánh các số hữu tỉ :
\(x=\frac{-2}{15};y=\frac{-10}{-11}\)
Ví dụ 6. So sánh các số hữu tỉ sau:
\(\frac{-16}{27};\frac{-16}{29};\frac{-16}{27}\)
em chưa học bài này ạ
cho dãy số hữu tỉ:
\(\frac{2}{3};\frac{4}{5};\frac{7}{8};\frac{3}{4};\frac{9}{10};\frac{8}{9};\frac{5}{6};\frac{6}{7}\)
a)Sắp xếp các số hữu tỉ theo thứ tự tăng dần
Nếu\(\frac{a}{b}\)là một số thuộc dãy trên thì số tiếp theo là số nào?
b)So sánh \(\frac{a}{b}\)với\(\frac{a+1}{a+2}\)
\(a)\)
Ta có :
\(1-\frac{2}{3}=\frac{1}{3};1-\frac{4}{5}=\frac{1}{5};1-\frac{7}{8}=\frac{1}{8};1-\frac{3}{4}=\frac{1}{4}\)
\(1-\frac{9}{10}=\frac{1}{10};1-\frac{8}{9}=\frac{1}{9};1-\frac{5}{6}=\frac{1}{6};1-\frac{6}{7}=\frac{1}{7}\)
Do \(\frac{1}{3}>\frac{1}{4}>\frac{1}{5}>\frac{1}{6}>\frac{1}{7}>\frac{1}{8}>\frac{1}{9}>\frac{1}{10}\)
\(\Rightarrow1-\frac{1}{3}< 1-\frac{1}{4}< 1-\frac{1}{5}< 1-\frac{1}{6}< 1-\frac{1}{7}< 1-\frac{1}{8}< 1-\frac{1}{9}< 1-\frac{1}{10}\)
\(\Rightarrow\frac{2}{3}< \frac{3}{4}< \frac{4}{5}< \frac{5}{6}< \frac{6}{7}< \frac{7}{8}< \frac{8}{9}< \frac{9}{10}\)
Nếu \(\frac{a}{b}\)là 1 số thuộc dãy trên thì số tiếp theo là :
\(\frac{a+1}{b+1}\)
\(b)\)
Ta có :
\(a\left(a+2\right)=a^2+2a\)
\(b\left(a+1\right)=ab+b\)
Sorry , đến bước này mik chịu
~ Ủng hộ nhé
Phần b) Ý bạn là so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+2}\)
so sánh 2 số hữu tỉ sau: x=-0,75 và y=\(\frac{-3}{4}\)
Ta có: \(y=\frac{-3}{4}=-0,75\)
\(\Rightarrow x=-0,75=y\)
Vậy x = y.
Chúc bạn học tốt.
\(x=-0,75=\frac{-75}{100}=\frac{-3}{4}\)
\(y=\frac{-3}{4}=3\div4=-0,75\)
Vậy \(x=y\)