cho a,b,c khác 0. 1/a+1/b+1/c=3 và a+b+c=a*b*c
Tính 1/a^2+1/b^2+1/c^2
GIÚP MÌNH BÀI NÀY VS
a) phân tích đa thức thành nhân tử
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
b)cho a,b,c khác nhau khác 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
rút gọn biểu thức \(N=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\)
LÀM ƠN GIÚP MÌNH VỚI MÌNH ĐANG CẦN LỜI GIẢI CỦA BÀI NÀY GẤP LẮM MAI MÌNH PHẢI NỘP RỒI!!! LÀM ƠN NHA MỌI NGƯỜI
b,\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=>\(\dfrac{bc}{abc}+\dfrac{ac}{bac}+\dfrac{ab}{abc}=0\)
=>\(\dfrac{ab+ac+bc}{abc}=0\)
=>ab+ac+bc=0
=>ab=-ac-bc
ac=-ab-bc
bc=-ab-ac
N=\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\)
N=\(\dfrac{1}{a^2+bc+bc}+\dfrac{1}{b^2+ca+ca}+\dfrac{1}{c^2+ab+ab}\)
N=\(\dfrac{1}{a^2-ab-ac+bc}+\dfrac{1}{b^2-ab-bc+ca}+\dfrac{1}{c^2-ac-bc+ab}\)
N=\(\dfrac{1}{a\left(a-b\right)-c\left(a-b\right)}+\dfrac{1}{b\left(b-a\right)-c\left(b-a\right)}+\dfrac{1}{c\left(c-a\right)-b\left(c-a\right)}\)
N=\(\dfrac{1}{\left(a-c\right)\left(a-b\right)}+\dfrac{1}{\left(b-c\right)\left(b-a\right)}+\dfrac{1}{\left(c-b\right)\left(c-a\right)}\)
N=\(\dfrac{b-c}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}-\dfrac{a-c}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\dfrac{a-b}{\left(b-c\right)\left(a-c\right)\left(a-b\right)}\)
N=\(\dfrac{b-c-a+c+a-b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)=0
Giúp mình 2 bài toán này nhé!
1. So sánh số hữu tỉ
A.-1 phần 3 và 1 phần 100
B.-231 phần 232 và -1321 phần 1320
C.-27 phần 29 và 272727 phần 292929
2. Cho a,b € Z, a<b, b>0. Chứng minh rằng:
a phần b < a+1 phần b+1
Bài 1:
a) Ta có:
\(\frac{-1}{3}< 0\)
\(\frac{1}{100}>0\)
\(\Rightarrow\frac{-1}{3}< \frac{1}{100}\)
b)Ta có;
\(\frac{-231}{232}>-1\)
\(\frac{-1321}{1320}< -1\)
\(\Rightarrow\frac{-231}{232}>\frac{-1321}{1320}\)
c) Ta có:
\(\frac{-27}{29}< 0\)
\(\frac{272727}{292929}>0\)
\(\Rightarrow\frac{-27}{29}< \frac{272727}{292929}\)
Bài 2:
\(a\left(b+1\right)=ab+a\)
\(b\left(a+1\right)=ab+b\)
Mà \(a< b\)
\(\Rightarrow a\left(b+1\right)< b\left(a+1\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
cho a,b,c khác 0. 1/a+1/b+1/c=3 và a+b+c=a*b*c
Tính 1/a^2+1/b^2+1/c^2
cho a,b,c khác 0,a khác b,b.c khác 1 và a.c khác 1
CM:\(\frac{a^{2-bc}}{a\left(1-bc\right)}=\frac{b^{2-ac}}{b\left(1-ac\right)}\Leftrightarrow a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
a) phân tích đa thức thành nhân tử
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
b) cho a,b,c khác nhau khá 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
rút gọn biểu thức \(N=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\)
GIÚP MÌNH VỚI LÀM ƠN
đơn giản, cứ áp dụng theo công thức là ra!!!!
biết \(\int_1^3\) (\(\sqrt[3]{x-\dfrac{1}{x^2}}\) +2\(\sqrt[3]{\dfrac{1}{x^8}-\dfrac{1}{x^{11}}}\))dx = \(\dfrac{a}{b}\) \(\sqrt[3]{c}\) ,với a,b,c nguyên dương, \(\dfrac{a}{b}\) tối giản và \(\dfrac{a}{b}\) thuộc \(\left(0;1\right)\).tính S = a+b+c(GIÚP MÌNH BÀI NÀY VS Ạ)
những câu tích phân như này giải tay ko hề dễ, nên mình dùng table mò ra a=13,b=18,c=78 => a+b+c=109 :v
Cho \(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Với a,b,c, khác 0 , b khác c.Chứng minh \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
Bài cho thi học kỳ giúp mik với
cho a,b,c là các số khác 0 thỏa mãn 1/a+1/b+1/c*1/a+1/b+1/c=2 và a+b+c=abc
tính giá trị biểu thức:p= 1/a2+ 1/b2+ 1/c2
Cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn a+b/c = b+c/a = c+a/b
Tính giá trị biểu thức M = ( 1+a/b)(1+b/c)(1+a/c)