cho tam giác ABC có AC=6cm. Trên cạnh AC lấy điểm M sao cho AM=3cm và tia BM là tia phân giác gócABC . Biết góc ABC=62 độ,
gocsBCA=28 độ
chứng minh m là trung điểm của AC
Giúp mình bài toán này nha!!
Cho tam giác A,B,C có AC = 6 cm, trên cạnh AC lấy điểm M sao cho AM = 3 cm và tia BM là tia phân giác của góc ABC. Biết góc ABC = 62 độ, góc BCA = 28 độ.
a. Chứng tỏ M là trung điểm của AC.
b.Tính góc ABM.
c. Biết góc AMB = góc MBC + góc MCB tính góc BMC
Trả lời zùm mình nha mấy pn mk đánh k cho mơn nhìu
Cho tam giác ABC có AB<AC. AD là tia phân giác của góc BAC. trên cạnh AC lấy điểm M sao cho AM=AB.
a, Chứng minh tam giác ABD = tam giác AMD.
b, Gọi I là giao điểm của AD và BM. Chứng minh I là trung điểm BM và AI vuông góc với BM
c, Gọi K là trung điểm của AM, trên tia đối của tia KB lấy điểm P sao cho KB = KP. chứng minh MP // AB.
d, trên tia đối của tia MP lấy điểm E sao cho MP = ME. Chứng minh A, I, E thẳng hàng
giúp nhanh mik vs mik đang cần gấp ạ
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM
=>D nằm trên đường trung trực của BM(1)
Ta có: AB=AM
=>A nằm trên đường trung trực của BM(2)
Từ (1) và (2) suy ra AD là đường trung trực của BM
=>AD\(\perp\)BM tại I và I là trung điểm của BM
c: Xét ΔKBA và ΔKPM có
KB=KP
\(\widehat{BKA}=\widehat{PKM}\)(hai góc đối đỉnh)
KA=KM
Do đó: ΔKBA=ΔKPM
=>\(\widehat{KBA}=\widehat{KPM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//MP
Bài 1: Cho tam giác ABC(AB<AC), AD là tia phân giác của góc BAC(D∈BC). Trên cạnh AC lấy điểm M sao cho AM=AB
1) Chứng minh △ABD=△AMD
2) Gọi I là giao điểm của AD và BM. Chứng minh I là trung điểm của BM và AI ⊥BM.
3) Gọi K là trung điểm của AM, trên tia đối của tia KB lấy điểm P sao cho KB=KP. Chứng minh MP//AB
1: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
Bài 1: Cho tam giác ABC(AB<AC), AD là tia phân giác của góc BAC(D∈BC). Trên cạnh AC lấy điểm M sao cho AM=AB
1) Chứng minh △ABD=△AMD
2) Gọi I là giao điểm của AD và BM. Chứng minh I là trung điểm của BM và AI ⊥BM.
3) Gọi K là trung điểm của AM, trên tia đối của tia KB lấy điểm P sao cho KB=KP. Chứng minh MP//AB
1: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
Bài 13: Cho ABC có AB = 6cm BC = 8 cm; AC = 10 cm; Tia phân giác của góc A cắt cạnh BC tại M; trên cạnh AC lấy điểm N sao cho AB = AN
a) ABC là tam giác gì ? Vì sao ? b) Chứng minh MN AC
c)Chứng minh AM là đường trung trực của đoạn thẳng BM
d*) Qua C kẻ đường thẳng song song với NB cắt tia AB tại T. Chứng minh 3 điểm T; M; N thẳng hàng
a: AC^2=BA^2+BC^2
=>ΔABC vuông tại B
b: Xét ΔABM và ΔANM có
AB=AN
góc BAM=góc NAM
AM chung
=>ΔABM=ΔANM
=>góc ANM=90 độ
=>MN vuông góc AC
c: AB=AN
MB=MN
=>AM là trung trực của BN
d: CT//BN
BN vuông góc AM
=>AM vuông góc CT
Xét ΔATC có
AM,CB là đường cao
AM cắt CB tại M
=>M là trực tâm
=>TM vuông góc AC
mà MN vuông góc AC
nên T,M,N thẳng hàng
Cho tam giác ABC biết AB < AC. AE là tia phân giác của góc BAC. Trên cạnh AC lấy điểm M sao cho AM = AB. AE cắt BM tại I. Trên tia đối của tia AM lấy điểm N sao cho EN = EC. Chứng minh:
a. Tam giác ABE = tam giác AME. (đã chứng minh)
b. IB = IM. (đã chứng minh)
c. Tam giác ENB = tam giác ECM. (đã chứng minh)
d. A, B, N thẳng hàng.
Sửa đề: Trên tia đối của tia EM lấy N sao cho EN=EC
a: Xét ΔABE và ΔAME có
AB=AM
\(\widehat{BAE}=\widehat{MAE}\)
AE chung
Do đó: ΔABE=ΔAME
b: Ta có: ΔABE=ΔAME
=>EB=EM
=>E nằm trên đường trung trực của BM(1)
Ta có: AB=AM
=>A nằm trên đường trung trực của BM(2)
Từ (1) và (2) suy ra AE là đường trung trực của BM
=>AE\(\perp\)BM tại I và I là trung điểm của BM
=>IB=IM
c: Xét ΔENB và ΔECM có
EN=EC
\(\widehat{NEB}=\widehat{CEM}\)(hai góc đối đỉnh)
EB=EM
Do đó: ΔENB=ΔECM
d: Ta có: ΔENB=ΔECM
=>\(\widehat{EBN}=\widehat{EMC}\)
mà \(\widehat{EMC}+\widehat{AME}=180^0\)(hai góc kề bù)
và \(\widehat{AME}=\widehat{ABE}\)(ΔAME=ΔABE)
nên \(\widehat{ABE}+\widehat{NBE}=180^0\)
=>A,B,N thẳng hàng
Cho tam gíac ABC có AB=6cm, AC=8cm. Trên cạnh AB lấy điểm M sao cho BM=3,75cm. Kẻ MN//BC(N thuộc AC)
a)Tính độ dài các đoạn thẳng AN, CN
b)gọi K là trung điểm của MN, I là gia điểm của tia AK và BC.Chứng minh I là trung điểm của đoạn thẳng BC
c) Chứng minh rằng: Nếu tam giác ABC là tam giác vuông tại A thì tia BN là tia phân giác của góc ABC
a) Ta có
+)AM=AB-BM=6-3,75=2,25
+)MN//BC => \(\frac{AN}{AC}=\frac{AM}{AB}\)=> \(\frac{AN}{8}=\frac{2,25}{6}=\frac{3}{8}\)
=> AN=3(cm)
CN=AC-AN=8-3=5(cm)
b) +)MK//BI => \(\frac{MK}{BI}=\frac{AK}{AI}\left(1\right)\)
+) NK//CI => \(\frac{NK}{CI}=\frac{AK}{AI}\left(2\right)\)
(1)(2) => \(\frac{MK}{BI}=\frac{NK}{CI}\)mà MK=NK (K là trung điểm MN)
=> BI=CI => I là trung điểm BC
c) \(\Delta\)ABC vuông tại A
=> BC2=AB2+AC2=62+82=102 (Định lý Pytago)
=> BC=10cm
Ta có: \(\hept{\begin{cases}\frac{AN}{CN}=\frac{3}{5}\\\frac{AB}{BC}=\frac{6}{10}=\frac{3}{5}\end{cases}\Rightarrow\frac{AN}{CN}=\frac{AB}{AC}=\frac{3}{5}}\)
=> BN là phân giác \(\widehat{ABC}\)
Cho tam gíac ABC có AB=6cm, AC=8cm. Trên cạnh AB lấy điểm M sao cho BM=3,75cm. Kẻ MN//BC(N thuộc AC)
a)Tính độ dài các đoạn thẳng AN, CN
b)gọi K là trung điểm của MN, I là gia điểm của tia AK và BC.Chứng minh I là trung điểm của đoạn thẳng BC
c) Chứng minh rằng: Nếu tam giác ABC là tam giác vuông tại A thì tia BN là tia phân giác của góc ABC
Cho tam gíac ABC có AB=6cm, AC=8cm. Trên cạnh AB lấy điểm M sao cho BM=3,75cm. Kẻ MN//BC(N thuộc AC)
a)Tính độ dài các đoạn thẳng AN, CN
b)gọi K là trung điểm của MN, I là gia điểm của tia AK và BC.Chứng minh I là trung điểm của đoạn thẳng BC
c) Chứng minh rằng: Nếu tam giác ABC là tam giác vuông tại A thì tia BN là tia phân giác của góc ABC
https://olm.vn/hoi-dap/detail/5736377385.html
bn vào đi ~